

WELCOME

Artemis I is the first integrated test of NASA's Orion spacecraft, Space Launch System (SLS) rocket, and the ground systems at NASA's Kennedy Space Center in Cape Canaveral, Florida. Artemis I is an uncrewed flight test that will provide a foundation for human deep space exploration, and demonstrate NASA's commitment and capability to extend human presence to the Moon and beyond.

NASA invites you and your organization to host a virtual or in person Artemis I launch and/ or splashdown watch party. Register to host a watch party on the Eventbrite Artemis I site: https://www.eventbrite.com/e/artemis-i-registration-144043131885?aff=museum.

Register your group or organization for a private or public watch party. *Private* events are not open to the public but to a select group of individuals. They may take place in, but are not limited to, schools/individual classrooms, afterschool programs, homeschool groups, scouts, and retirement homes. *Public* events are open to everyone and may take place in, but are not limited to, museums, science centers, planetariums, libraries, pubs, and community centers. All event types may add on the Learning Pathways ticket to gain access to 4 weeks of free curated lessons and activities for teachers, museums, and parents.

This event planning guide will help take your watch party to the next level. The guide includes free NASA activities, videos, imagery, talking points, and other multimedia resources that will enhance engagement.

All resources, participation, and registration are FREE. Registered groups will receive communications about launch schedule changes, launch related activities, and access to curated launch resources.

TABLE OF CONTENTS

Learn A	bout Artemis and Become an Expert	3
	Artemis I Overview	3
	Artemis I Overview Video	5
	Artemis I Mission Map	5
	Fact Sheets and Resource Pages	5
STEM A	activities and Outreach Resources	6
	Floor Demos	6
	Impact Craters	
	How Far Away Is the Moon?	
	Family Table Activities	
	Light but Strong	
	Build and Launch an SLS Straw Rocket	
	Simple Rocket Science	
	Simple Rocket Science Continued	
	Build your own Space Launch System	
	#DrawArtemis	
	Activity Books and Coloring Sheets	9
	K-12 Formal Education Activities and Opportunities	
	Join the Artemis Mission to the Moon	
	Propulsion with the Space Launch System Educator Guide	
	Engineering a Rocket Transporter	
	Catching a Whisper from Space	11
Exhibit	and Graphic Display Resources	12
	Artemis Graphics Standard Guide and Graphics Assets	12
	Artemis Inspiration Guide	12
	Artemis Multimedia Catalog	12
	We Are Going Banners	12
	Artemis Images on the Web	12
	Space Launch System Infographics	13
	Orion Spacecraft Infographics	15
	Exploration Ground Systems Infographics	15
	VR and Interactives	15
	Inspirational and Educational Videos	16
	NASA STEM Stars Videos	17
Connec	et with NASA	18
	NASA Artemis on Social Media	18
	Request a Speaker	18
	Schedule Training	18
	Participate in Artemis Themed Webinars	18

LEARN ABOUT ARTEMIS AND BECOME AN EXPERT

ARTEMIS I OVERVIEW

Artemis I is the first integrated test of NASA's deep space exploration systems: the Orion spacecraft, the SLS rocket, and the ground systems at Kennedy. The first in a series of increasingly complex missions, Artemis I will be an uncrewed flight test that will provide a foundation for human deep space exploration, and demonstrate our commitment and capability to extend human existence to the Moon and beyond.

During this flight, the spacecraft will launch on the most powerful rocket in the world and fly farther than any spacecraft built for humans has ever flown. It will travel 280,000 miles from Earth, thousands of miles beyond the Moon over the course of approximately 4 to 6 weeks on its mission. Orion will stay in space longer than any ship for astronauts has without docking to a space station and return home faster and hotter than ever before.

LEAVING EARTH

SLS and Orion will blast off from Launch Complex 39B at NASA's modernized spaceport at Kennedy. The SLS rocket is designed for missions beyond low-Earth orbit carrying crew or cargo to the Moon and beyond, and will produce 8.8 million pounds of thrust during liftoff and ascent to loft a vehicle weighing nearly six million pounds to orbit. Propelled by a pair of five-segment solid rocket boosters and four RS-25 engines, the rocket will reach the period of greatest atmospheric force within ninety seconds. After jettisoning the boosters, service module panels, and launch abort system, the core stage engines will shut down and the core stage will separate from the spacecraft.

HELPFUL LINKS

ARTEMIS I MISSION WEBSITE

Artemis I is the first in a series of increasingly complex missions that will enable human exploration to the Moon and Mars.

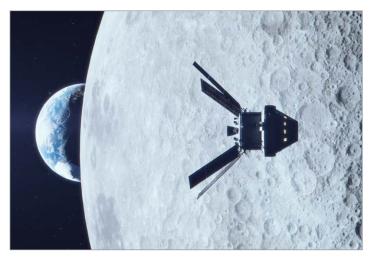
WEBSITE: LINK

ARTEMIS BLOG: LATEST MISSION AND MILESTONE UPDATES

A source of information on Artemis launch and exploration progress, covering updates across our science, technology, and human exploration programs.

WEBSITE: LINK

ARTEMIS OVERVIEW PRESENTATION


An In-depth PowerPoint presentation on Artemis, its systems, and objectives.

DOWNLOAD: PPT

As the spacecraft makes an orbit of Earth, it will deploy its solar arrays and the interim cryogenic propulsion stage (ICPS) will give Orion the big push needed to leave Earth's orbit and travel toward the Moon. From there, Orion will separate from the ICPS about two hours after launch. The ICPS will then deploy a number of small satellites, known as CubeSats, to perform several experiments and technology demonstrations.

ON TO THE MOON

As Orion continues on its path from Earth orbit to the Moon, it will be propelled by a service module, provided by the European Space Agency, that will supply the spacecraft's main propulsion system and power (as well as provide air and water for astronauts on future missions). Orion will pass through the Van Allen radiation belts, fly past the Global Positioning System (GPS) satellite constellation and above communication satellites in Earth orbit. To maintain communications with mission control in Houston, Orion will switch from NASA's Tracking and Data Relay Satellite system and communicate through the **Deep Space Network**. From here, Orion will continue to demonstrate its unique design to navigate, communicate, and operate in a deep space environment.

Artist concept of Artemis I Orion lunar flyby.

The outbound trip to the Moon will take several days, during which time engineers will evaluate the spacecraft's systems and, as needed, correct its trajectory. Orion will fly about 60 miles (100 km) above the surface of the Moon and then use the Moon's gravitational force to propel Orion into a new deep retrograde, or opposite, orbit about 40,000 miles (65,000 km) from the Moon.

The spacecraft will stay in that orbit for approximately six days to collect data and allow mission controllers to assess the performance of the spacecraft. During this period, Orion will travel in a direction around the Moon retrograde from the direction the Moon travels around Earth.

RETURN AND RE-ENTRY

For its return trip to Earth, Orion will do another close flyby that takes the spacecraft within about 60 miles of the Moon's surface and the spacecraft will use another precisely timed engine firing of the European-provided service module in conjunction with the Moon's gravity to accelerate back toward Earth. This maneuver will set the spacecraft on its trajectory back toward Earth to enter our planet's atmosphere traveling at 25,000 mph (11 kps), producing temperatures of approximately 5,000 degrees Fahrenheit (2,760 degrees Celsius) – faster and hotter than Orion experienced during its 2014 flight test.

After several weeks and a total distance traveled exceeding 1.3 million miles, the mission will end with a test of Orion's capability to return safely to the Earth as the spacecraft makes a precision landing within eyesight of the recovery ship off the coast of Baja, California. Following splashdown, Orion will remain powered for a period of time as divers from the U.S. Navy and operations teams from NASA's Exploration Ground Systems approach in small boats from the waiting recovery ship. The divers will briefly inspect the spacecraft for hazards and hook up tending and tow lines. Engineers will tow the capsule into the well-deck of the recovery ship to bring the spacecraft home.

FUTURE MISSIONS

The **second flight** will take crew on a different trajectory and test Orion's critical systems with humans aboard. On future missions, the SLS rocket will evolve from an initial configuration capable of sending more than 26 metric tons to the Moon to a final configuration that can send at least 45 metric tons. Together, Orion, SLS, and the ground systems at Kennedy will be able to meet the most challenging crew and cargo mission needs in deep space.

Future exploration missions with crew aboard Orion will assemble and dock with the **Gateway**. NASA and its industry partners will use the Gateway for deep-space operations including missions to and on the Moon with decreasing reliance on the Earth. Using lunar orbit, we will gain the experience necessary to extend human exploration farther into the solar system than ever before.shown

ARTEMIS I OVERVIEW VIDEO

PUSHING FARTHER INTO DEEP SPACE

Experience the Artemis I mission from roll-out to recovery of the first integrated flight test of NASA's Orion spacecraft and the SLS rocket, launching from NASA's Kennedy Space Center in Florida.

DOWNLOAD: MP4 YOUTUBE: LINK

ARTEMIS I MISSION MAP

Journey map of Artemis I and its integrated systems.

WEBSITE: LINK

FACT SHEETS AND RESOURCE PAGES

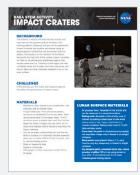
EXPLORATION GROUND SYSTEMS

WEBSITE: LINK

ORION SPACECRAFT

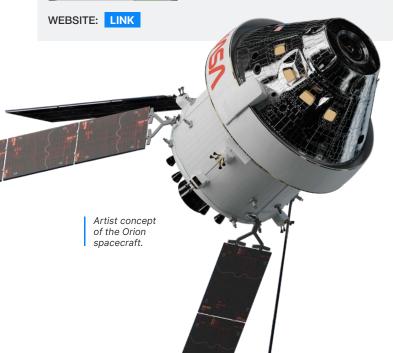
WEBSITE: LINK

SPACE LAUNCH SYSTEM (SLS)


WEBSITE: LINK

STEM ACTIVITIES AND OUTREACH RESOURCES

FLOOR DEMOS


WEBSITE: LINK

IMPACT CRATERS

Create your own impact craters! When astronauts visit the Moon, they will be able to study the craters that may contain water and ice. Testing and studying these craters may help NASA identify areas on the Moon that are rich in water and other resources to determine how to best use those materials while on the lunar surface.

HOW FAR AWAY IS THE MOON?

To see for yourself how far apart Earth and the Moon are, try this activity!

FAMILY TABLE DEMOS

BUILD AND TEST AN ORION SPACECRAFT

In this activity, you will decorate a white paper cup with paint, markers, and glitter, cut out windows, and even install a heat shield on the bottom of your capsule. Then test your spacecraft!

DOWNLOAD: PDF

LIGHT BUT STRONG

Design and build a mobile launcher platform that is light enough to be moved to the launch pad, but strong enough to hold the weight of the rocket.

DOWNLOAD: PDF

DOWNLOAD: PDF

BUILD AND LAUNCH AN SLS STRAW ROCKET

Can you launch a rocket into orbit? You can test your skills by making a simple rocket using the SLS pattern, tape, and a straw. Then, learn how much air is needed to launch your rocket to different altitudes.

6

FAMILY TABLE DEMOS

WEBSITE: LINK

WEBSITE: LINK

SIMPLE ROCKET SCIENCE

whether the amount of air in a balloon changes the distance it will travel on a fishing line. They will collect data from multiple tests and then create a graph to visualize the variation.

Students perform a simple science experiment to learn how a rocket works and demonstrate Newton's third law of motion. Students will predict the motion of a rocket, perform an experiment to verify, and repeat the experiment to validate the results.

FAMILY TABLE DEMOS

DOWNLOAD: PDF

BE AN ARTEMIS ASTRONAUT

Help protect our astronauts by designing a spacesuit with colored pencils, crayons, and construction paper. Each astronaut and his/her spacesuit will be as unique and creative as you are!

DOWNLOAD: PDF

BUILD YOUR OWN SPACE LAUNCH SYSTEM

Students will build their own Space Launch System using poster paper, copier paper, and everyday school supplies. Students can then use markers and/or poster paint to make it their own design.

#DRAWARTEMIS

DOWNLOAD AND CREATE ARTEMIS ILLUSTRATIONS OF YOUR OWN

Decorate your space with the systems that will take us to the Moon and beyond! While NASA astronauts continue to live and work aboard the International Space Station, we are preparing for a new future in deep space. With the Artemis missions, NASA will send the first woman and first person of color to the Moon to set foot once again, and will build an infrastructure to allow us to stay, preparing the way for missions to Mars.

Now you can learn to draw a fleet of sophisticated space hardware that will take us on Artemis missions - similar to the way NASA engineers and technicians sketched out early concepts for spacesuits, rockets, spaceships, ground systems, and orbiting platforms that have allowed us to explore other worlds.

WEBSITE: LINK

DRAW NASA'S ORION SPACECRAFT

DOWNLOAD: PDF

DRAW NASA'S ORION SURVIVAL **SYSTEM SUIT**

DOWNLOAD: PDF

DRAW NASA'S LUNAR TERRAIN VEHICLE (LTV)

DOWNLOAD: PDF

DRAW NASA'S DEEP SPACE NETWORK ANTENNA (DSN)

DOWNLOAD: PDF

DRAW NASA'S SPACE LAUNCH SYSTEM (SLS)

DOWNLOAD: PDF

DRAW NASA'S LAUNCH PAD 39B

DOWNLOAD: PDF

DRAW NASA'S GATEWAY -**FIRST COMPONENT**

DOWNLOAD: PDF

DRAW NASA'S VEHICLE ASSEMBLY BUILDING (VAB)

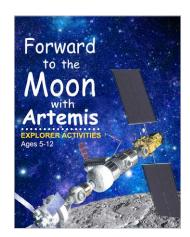
DOWNLOAD: PDF

DRAW NASA'S MOBILE LAUNCHER

DOWNLOAD: PDF

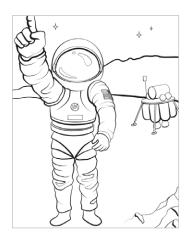
DRAW NASA'S EXPLORATION **EXTRAVEHICULAR MOBILITY** UNIT (XEMU)

DOWNLOAD: PDF


DRAW NASA'S CRAWLER-**TRANSPORTER**

DOWNLOAD: PDF

ACTIVITY BOOKS AND COLORING SHEETS


DOWNLOAD PRINTABLE ACTIVITY, WRITING, AND COLORING BOOKS

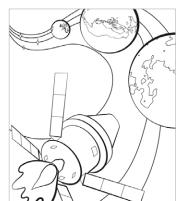
FORWARD TO THE MOON WITH **ARTEMIS ACTIVITY BOOK**

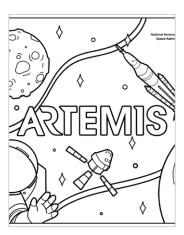
DOWNLOAD: PDF

ASTRONAUT ON THE MOON COLORING SHEET

DOWNLOAD: PDF

INSPIRE COLORING SHEET

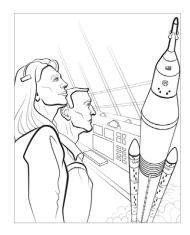

DOWNLOAD: PDF


JUNIOR RANGER SPACEFLIGHT **EXPLORER GUIDE**

DOWNLOAD: PDF

ORION IN SPACE COLORING SHEET

DOWNLOAD: PDF


ARTEMIS ILLUSTRATION COLORING SHEET

DOWNLOAD: PDF

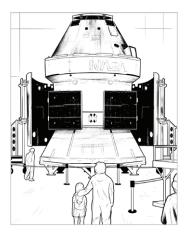
ORION DESKTOP MODEL

DOWNLOAD: PDF

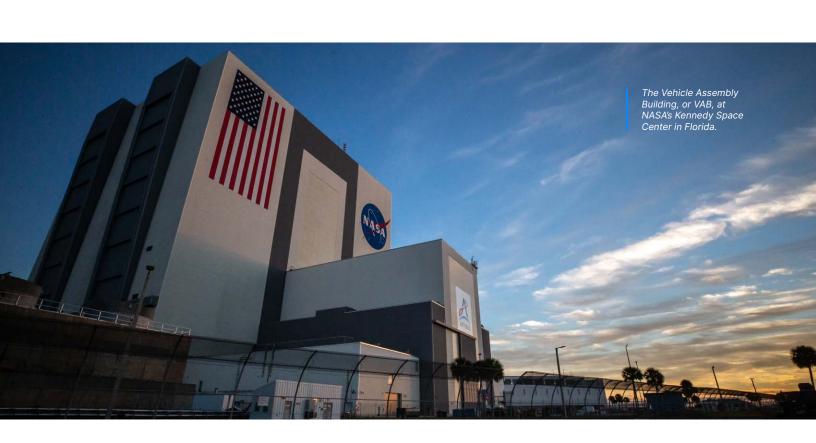

LAUNCH CONTROL ROOM COLORING SHEET

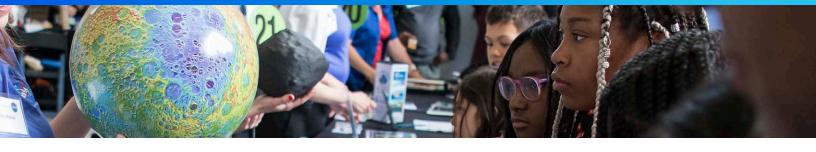
DOWNLOAD: PDF

SPACE LAUNCH SYSTEM COLORING BOOK


DOWNLOAD: PDF

GROUND SYSTEMS COLORING ACTIVITY BOOK


DOWNLOAD: PDF



YOU ARE GOING COLORING воок

DOWNLOAD: PDF

K-12 EDUCATION ACTIVITIES AND OPPORTUNITIES

JOIN THE ARTEMIS MISSION TO THE MOON

Make, launch, teach, compete, and learn. Find your favorite way to be part of the Artemis mission and explore Artemis student challenges.

WEBSITE: LINK

Crew Transportation With Orion

-

CREW TRANSPORTATION WITH ORION

Four standards-aligned activities help students learn about NASA's Orion spacecraft that will take astronauts to the Moon and beyond.

EDUCATOR GUIDE

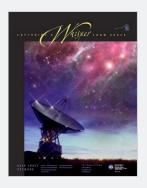
WEBSITE: LINK

Propulsion With the

Space Launch System

PROPULSION WITH THE SPACE LAUNCH SYSTEM EDUCATOR **GUIDE**

Four standards-aligned activities help students learn about rocketry and NASA's SLS rocket.


WEBSITE: LINK

WEBSITE: LINK

ENGINEERING A ROCKET TRANSPORTER

Students design, build, and program a robotic "super crawler" to transport a payload from a starting position to a target launch pad, use a robotic arm with an end effector to deliver the payload in an upright position, and return the robot to the starting point.

WEBSITE: LINK

CATCHING A WHISPER FROM SPACE

Students will model the mathematics used to communicate with spacecraft. They will use sound waves as an analog for light waves and parabolic transmitters and receivers to represent antennas on spacecraft and on Earth.

EXHIBIT AND GRAPHIC DISPLAY RESOURCES

ARTEMIS GRAPHICS STANDARD GUIDE

DOWNLOAD: PDF

ARTEMIS GRAPHICS STANDARD GUIDE AND GRAPHICS ASSETS

The goals of the Artemis Graphics Standard Guide and accompanying artwork assets are to help establish the visual identity for Artemis and provide a framework for developing materials that enhance public knowledge of NASA's work. Use these guidelines and assets for Artemis mission efforts.

ARTEMIS GRAPHICS ASSETS

BOX FOLDER: LINK

DOWNLOAD: PDF

ARTEMIS INSPIRATION GUIDE

This inspiration guide is a document showcasing the Artemis brand personality and brand tone of voice, as well as serving as an introduction to the Torch Bearer Design System. Explorations in color, layout design, and composition, as well as creative use of photography and typography give designers and communicators several tools to inspire a generation of people about the Artemis missions.

DOWNLOAD: PDF

ARTEMIS MULTIMEDIA CATALOG

This catalog is a visual guide to the Artemis branding graphics which are available for download in multiple formats in Box and on the NASA website, including concept imagery, photography, print products, videos, and virtual meeting backgrounds.

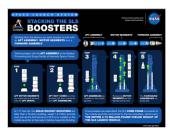
WE ARE GOING BANNERS

Invite audiences to sign and provide best wishes to the Artemis I team by displaying a "We Are Going" banner in your institution. Organizations may modify the graphic by adding their institutions name. Templates are included.

ARTEMIS IMAGES ON THE WEB

ARTEMIS IMAGES OR THE WEB		
NASA ARTEMIS IMAGE GALLERY	WEBSITE: LINK	
EXPLORATION GROUND SYSTEMS FLICKR IMAGE GALLERY	WEBSITE: LINK	
GATEWAY FLICKR IMAGE GALLERY	WEBSITE: LINK	
ORION SPACECRAFT FLICKR IMAGE GALLERY	WEBSITE: LINK	
SPACE LAUNCH SYSTEM (SLS) FLICKR IMAGE GALLERY	WEBSITE: LINK	

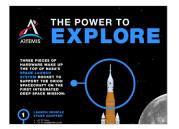
SPACE LAUNCH SYSTEM (SLS) INFOGRAPHICS


SLS MODAL TESTING

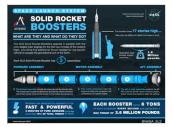
DOWNLOAD: JPG

DESIGNED FOR DEEP SPACE: SLS

DOWNLOAD: JPG


STACKING THE SLS BOOSTERS

DOWNLOAD: JPG


SLS INTERIM CRYOGENIC PROPULSION STAGE

DOWNLOAD: JPG

THE POWER TO EXPLORE

DOWNLOAD: JPG

SLS SOLID ROCKET BOOSTERS

DOWNLOAD: JPG

ARTEMIS TESTING: GREEN RUN CHECKLIST

DOWNLOAD: JPG

SLS EXPLORATION UPPER STAGE

DOWNLOAD: JPG

SLS LIQUID OXYGEN (LOX) TANK

DOWNLOAD: JPG

SLS LIQUID HYDROGEN (LH2) TANK

DOWNLOAD: JPG

SLS INTERTANK

DOWNLOAD: JPG

SLS FORWARD JOIN

DOWNLOAD: JPG

SLS ENGINE SECTION

DOWNLOAD: JPG

ARTEMIS I: FOUR RS-25 ENGINES

DOWNLOAD: JPG

INSIDE THE SLS CORE STAGE

DOWNLOAD: JPG

ROLLIN' ON THE RIVER: NASA'S BARGE PEGASUS

DOWNLOAD: JPG

SLS CORE STAGE PATHFINDER

DOWNLOAD: JPG

VOYAGE TO KENNEDY: SLS CORE STAGE DELIVERY

DOWNLOAD: JPG

WHAT IS FSB-1?

DOWNLOAD: JPG

WHAT IS QM-2?

DOWNLOAD: JPG

THE RS-25 ENGINE

DOWNLOAD: JPG

WHAT IS THE RS-25 **ENGINE?**

DOWNLOAD: JPG

THE HOW & WHY OF **RS-25 TESTING**

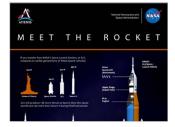
DOWNLOAD: JPG

RS-25 TESTING: TEST STANDS

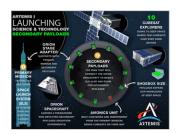
DOWNLOAD: JPG

RS-25 TESTING: LOX + LH2

DOWNLOAD: JPG


RS-25 TESTING: ENGINE SIZE

DOWNLOAD: JPG


RS-25 TESTING: SPEED

DOWNLOAD: JPG

MEET THE ROCKET

DOWNLOAD: JPG

ARTEMIS I: SECONDARY PAYLOADS

DOWNLOAD: JPG

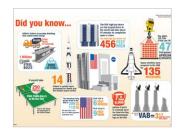
ORION SPACECRAFT INFOGRAPHICS

DESIGNED FOR DEEP SPACE: ORION

DOWNLOAD: JPG

SPACECRAFT TESTING: ORION

DOWNLOAD: JPG


EXPLORATION GROUND SYSTEMS INFOGRAPHICS

CRAWLER-TRANSPORTERS

DOWNLOAD: PDF

VEHICLE ASSEMBLY BUILDING (VAB)

DOWNLOAD: PDF

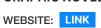
EGS: TIME TO FILL UP THE TANKS

DOWNLOAD: PDF

CONCEPT OF OPERATIONS

DOWNLOAD: PDF

VR AND INTERACTIVES



NASA SLS VR EXPERIENCE

WEBSITE: LINK

FIRST WOMAN GRAPHIC NOVEL

YOU ARE GOING CHILDREN'S BOOK

WEBSITE: LINK

VR/360 MULTIMEDIA FOR PLANETARIUMS

WEBSITE: LINK

INSPIRATIONAL AND EDUCATIONAL VIDEOS

ARTEMIS I: NASA'S PLANS TO TRAVEL BEYOND THE MOON

DOWNLOAD: MP4 YOUTUBE: LINK

WHY THE MOON?

YOUTUBE: LINK DOWNLOAD: MOV

WE ARE TESTED

DOWNLOAD: MP4

WE ARE FOCUSED

YOUTUBE: LINK DOWNLOAD: MP4

NASA 2021: LET'S GO TO THE MOON

DOWNLOAD: MP4 YOUTUBE: LINK

GATEWAY INTRODUCTION

DOWNLOAD: MP4 YOUTUBE: LINK

SPACE IS HARD

YOUTUBE: LINK DOWNLOAD: MP4

3, 2, 1...LIFTOFF OF THE ARTEMIS I MISSION TO THE MOON

YOUTUBE: LINK

ARTEMIS I: SLS LAUNCH AND MISSION ANIMATION

DOWNLOAD: MP4

NASA STEM STARS VIDEOS

PUBLICLY STREAMED ARTEMIS SPEAKER EVENTS

ARTEMIS I PANEL

YOUTUBE: LINK

AEROSPACE ENGINEER: ARTEMIS GREEN RUN TEST

YOUTUBE: LINK

MECHANICAL ENGINEER:
ARTEMIS ARMS AND UMBILICALS

YOUTUBE: LINK

ORION SYSTEMS INTEGRATION TEST ENGINEER

YOUTUBE: LINK

TECHNICAL LEAD ENGINEER (EN ESPAÑOL)

YOUTUBE: LINK

CONNECT WITH NASA

NASA ARTEMIS ON SOCIAL MEDIA

Follow, share, and be a part of the conversation on popular social media sites with NASA Artemis. Be sure to use the hashtag **#Artemis**!

@NASAARTEMIS

@NASAARTEMIS

@NASAARTEMIS

REQUEST A SPEAKER

To request a speaker, complete and submit the online request form, preferably six to eight weeks before your event.

WEBSITE: LINK

SCHEDULE TRAINING

To schedule museum staff and docent training, contact Patricia Moore at patricia.l.moore@nasa.gov

PARTICIPATE IN NASA ARTEMIS THEMED WEBINARS

OSTEM Educator Professional Development Webinars

WEBSITE: LINK

Museum & Informal Education Alliance Webinars

WEBSITE: LINK