


Introduction

This book was written to help answer one of the 
common questions heard in maths classrooms 
up and down the country, and even once in 
the Houses of Parliament – what’s the point of 
learning all this maths stuff?

Sometimes when you’re working hard on the detail, 
learning the steps for doing maths, you can lose sight 
of the bigger picture, the ‘why’ part of it all.

We can help. Each of these sheets deals with an area 
of maths. All your ‘favourites’ are here, algebra, 
trigonometry, statistics and so on, showing you why 
they are useful and what you can do with them.

Maths lets us understand and describe the world in a 
really useful way, predicting how the complex elements 
of life interact, and helping build new and useful 
technologies.

Google works because of maths, the once theoretical 
mathematics of the search engine has made billions; 
million-selling video games are maths telling a good 
story; today’s medicine uses maths. Almost every job in 
the world requires some maths to work.

Working with maths also helps you see the world 
in a different way. The logic and organisation of 
a mathematical brain can give you ways to solve 
problems and give you the edge in the job market, but 
it also opens up whole new ways to be creative, and 
yes even to have fun and enjoy maths. Hopefully after 
you’ve read this booklet, you’ll get the point.
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GPS
Ever got lost following sat nav directions? 
Let’s say you are lost in a town you have 
never been in before. You have to get to 
a friend’s house and there are no street 
signs. Avraham Trahtman solved the Road 
Colouring Problem that could really help.  
The directions will work no matter what. 

town planning
Town planners use maths as they design 
the functionality of towns and cities, 
particularly the shaping and uses of safe 
public spaces, recreational facilities, 
business and transport  needs. They also 
use mathematical models to forecast the 
future needs of groups of people such as 
new stadia for football clubs or retail parks 
and out-of-town supermarkets.

ancient farming and maths
Farming was one of the earliest applications of 
maths. There are records from ancient Egypt in 
1850 bc that show maths being used to predict 
when the Nile would flood.

bridges and engineering
It is possible to build a bridge by trial 
and error and hope it doesn’t collapse. 
However, modern engineering uses maths 
to design light-weight structures that we 
know will not fall over.

flood defences
Flooding can cause severe damage 
and cause financial havoc for residents, 
businesses, insurance companies and 
governments alike. Simple and cost-
effective flood defences can be made using 
embankments made of earth placed at 
strategic points. Simple volume calculations 
(and a bit of numerical integration) can 
help estimate the amount of earth required 
to prevent water from streams and rivers 
getting into homes.

contours and cartography
Is the ground flat or not? Cartographers once 
had to measure hills and use trigonometry, but 
now satellites can look down and use maths 
to provide a three-dimensional model of the 
whole Earth.
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Is this enough to mean that it’s better or could this be 
random chance?

If you let a stand for the probability that someone 
prefers cola A and b for the probability that someone 
prefers cola B, then you can represent five people 
making a choice like this:

(a + b)5 = a5 + 5a4 b + 10a3 b2 + 10a2 b3 +  5a b4 + b5

For the situation where cola A and cola B have the 
same probability of being chosen, (a = b = 0.5) you get 
the following values:

So this means that the probability of four or five out 
of five people choosing cola A is 0.1875 or 18.75% 
when the colas taste equally good. You should be very 
suspicious of the conclusion that cola A definitely tastes 
better.

When you learn algebra at school, it’s not long 
before your teacher starts making you ‘expand 
brackets’. You then never escape from these 
expanding brackets and one day you may find 
yourself learning about the binomial theorem. 
But why would anyone need to know about the 
binomial theorem?

The binomial theorem is a short cut so that you don’t 
have to expand brackets and then simplify the terms. 
Mathematicians from Euclid in 400 bc onwards have 
noticed this short cut. It was eventually formalised 
by Blaise Pascal in a pamphlet that was published in 
1665, shortly after he died.

If you are surveying people to find out which cola drink 
they prefer you could get lots of people to choose 
between the two products and see which one gets 
picked the most. If cola A is selected more than cola B, 
you could conclude that cola A tastes better. But what 
if they actually taste equally good? It could have been 
that cola A was selected more often just by random 
chance.

If the two drinks actually taste equally good, then they 
each have a 50% chance of being selected. So what if 
four, or even five, out of five people selected cola A? 

The binomial theorem 
and taste testing
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Number of 

people choosing 

cola A

Number of 

people choosing 

cola B

Probability

5 0 0.031 25

4 1 0.156 25

3 2 0.312 50

2 3 0.312 50

1 4 0.156 25

0 5 0.031 25

A   B
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Relativity

Part of the power of the binomial theorem is 
its ability to speed up the use of complicated 
equations. In the equations that govern Einstein’s 
theory of relativity there is this term.

When a satnav uses GPS coordinates to calculate its 
position, the GPS satellites are moving in a different 
gravitational field to your car and so the calculations 
need to allow for relativistic time dilation, where time 
appears to move at different speeds when observed 
from different moving objects. Thanks to the binomial 
theorem, a satnav can do these calculations quickly 
enough to get you home on time!

Making pictures

If you write the coefficients of the binomial 
theorem in a triangle then you end up with 
Pascal’s triangle, where each number equals the 
sum of the two above. 

Then, if you colour in all of the odd numbers, you end 
up with the fractal known as the Sierpinski triangle. 
The Sierpinski triangle is created by taking a triangle, 
splitting it into four equal triangles and removing the 
middle one, then continually repeating this process on 
the new triangles created.

1 ...x x x= + + + +2 31 1 3 5
2 8 161 x

We can use the binomial theorem to expand this.

1
1 x
1

1 x
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The number of people will depend on the number of 
people I invite, let’s call that number i, and suppose 
we estimate that only half of them will actually turn up, 
that will give us 0.5i people. Of those that do turn up, 
about half will bring someone else with them, so that’s 
an extra 0.5 × (0.5 × i) people. So the total number of 
people will be p = 0.5i + (0.5 × 0.5i) = 0.75i, oh and I’ll 
be there too so that’s p = 0.75i + 1. 

Of course they’ll all want something to eat. The recipe 
for my famous spag boll says I’ll need 1 kg of spaghetti 
for five people, but how much will I need for the party? 
The amount of spaghetti needed per person is 
0.2 kg, so for the party I’ll need s = 0.2 × (0.75i + 1) kg, 
so that everyone can taste the wonder! I now, thanks to 
algebra, have a way of predicting how much spaghetti, 
or any other party ingredient, I need based on the 
number of invitations so I can estimate the cost of the 
party. So now it’s decision time, how many invitations?
 
Solving almost any problem in life which involves 
money, time, distance, the amount or size of something 
or even simply comparing prices when shopping, all 
use algebra.

If 2x + 1 = 7 what is x? To solve for x, subtract 
1 from each side, so 2x = 6, so x = 3, so what! 
Algebra, what’s the point? 

Algebra is used all over the place: if we aren’t sure 
what a value can be, for example the number of 
people who are going to be at my party, we can use a 
letter to represent that value. Let’s call the total number 
of people at my party p, where that p could be anything 
from a popular 70 to a sad 2.

How many make a crowd?
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Algebra isn’t just about solving textbook equations 
like 2x + 1 = 7; it’s a way to mathematically model the 
world. The word model here doesn’t have anything to 
do with catwalks, it’s a scientific term that refers to a 
way of building a description of sometimes complicated 
situations using letters or symbols to represent possible 
values. v = u + at is a mathematical model: it tells you 
how fast your car will be going if it starts at speed u 
and accelerates for t seconds with acceleration a. Slot 
in the values you fancy and, vrooom, you have the 
answer you need. Car designers, in fact designers of all 
types of products, and also architects and engineers, 

Historically the word 
‘algebra’ is believed 
to come from the 
Arabic word ‘al-
jabr’, which scholars 

believe refers to the 
act of restoration or 

balancing.

In algebra the equations you have will contain an 
equals sign and the rule is what you do to one side 
of the equation, you do to the other side too, to keep 
the equation balanced. But you need to be careful 
with algebra. The steps below all seem to follow one 
after another but something must have gone wrong 
somewhere along the line. Can you spot the mistake in 
this algebraic balancing puzzle?

Two is equal to one – I don’t think so! 
Where did it go wrong? 

a = x   
a2 = ax   

a2 – x2 = ax – x2          
(a + x)(a – x) = x(a – x)   

a + x = x      
2x = x     
2 = 1                 

use algebra all the time to ensure that they know 
exactly how the things they are making will turn out. 
Algebra is even part of the process for designing and 
testing new medicines. Without these mathematical 
models and the power of algebra to capture the way 
the world works we wouldn’t have the products we 
all need to get along. Salesmen and truck drivers use 
algebra to calculate mileage, nurses use it to give 
correct doses of medicines and many others need to do 
some to fill in that dreaded tax return.

A drive for using algebra

The mistake is near the end, when we did the division. 
We said at the start that a equals x, so (a – x) is zero 
and dividing by zero just doesn’t work mathematically. 
Think about it. How many nothings are there in 
something? 

Many mathematical theories have come to an abrupt 
end because of this divide by zero problem. You can’t 
do it; if you try you get nonsense! 

A well-known example of why this sort of algebraic 
error is important in the real world is the case of the US 
navy ship Yorktown. In its time it was state-of-the-art 
computer controlled but, in September 1997 while on 
manoeuvres, a crew member entered a zero by mistake 
into the ship’s software. The computer system couldn’t 
cope with this error and the computer control systems 
failed leaving the ship without any working engines for 
a few hours. 

Using algebra to check that computer software is 
correct is now big business. In safety-critical computer 
systems, such as deploying aeroplane landing gear, 
algebra plays a key role in checking that all the 
possible inputs lead to safe outputs.

Zeroing in on a puzzle 
with algebra

(which is true for some a’s and x’s)
(multiply both sides by a)
(subtract x2 from both sides)
(factorise)
(divide both sides by a – x)
(as a = x)
(divide both sides by x)
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The public key uses the product of two large prime 
numbers and the private key uses the two prime 
numbers separately. If you think it sounds easy, try 
to find which two 8-digit prime numbers have been 
multiplied together to give

1 427 462 380 339 871.
Secure systems over the internet use prime numbers 
with a hundred digits or more! 

If you use a bank card to buy something from a website 
your card details are encrypted and sent over the 
internet. If someone intercepts this encrypted message it 
will be meaningless – only the bank, with its knowledge 
of the private key, will be able to decrypt and find out 
your card number. This security isn’t just restricted to 
financial transactions, for example a similar method 
can also be used when sending emails: you can 
digitally ‘sign’ emails to prove they came from you.

In the early part of the 20th century the mathematician 
G H Hardy worked on prime numbers. He was fiercely 
proud of being a Pure Mathematician and famously 
stated “Nothing I have ever done is of the slightest 
practical use”. Prime numbers are now at the heart of 
countless secure transactions every day!

Every time money is moved over the internet, 
whether it’s multi-million pound transactions or 
payments of less than a pound, prime numbers 
are used to make sure that the money is moved 
securely.  

When data, such as your bank card details, is sent over 
the internet it needs to be sent in code, or encrypted, 
so that if it was intercepted by criminals they wouldn’t 
be able to use it. Encrypting data uses a ‘key’. Early 
methods used the same key to both encrypt and 
decrypt messages. The problem with sending data over 
the internet is that the key for encrypting data needs 
to be freely available so that anyone can send in a 
transaction (this is known as the ‘public key’) but the 
key for undoing the code needs to be secret so that if 
criminals intercept the message they can’t decrypt it 
(this is known as the ‘private key’). 

It is very difficult to find a system where you can’t easily 
find the private key if you know the public one. In the 
1970s, however, three American mathematicians, Ron 
Rivest, Adi Shamir and Leonard Adleman developed 
a method based on prime numbers. This method has 
been named RSA after them. 

RSA uses the idea that multiplying two large prime 
numbers together is relatively easy but 
factorising them is much more difficult. 

Maths makes the world go round
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Books have a unique number on them to identify 
them. Before 2005 a 10-digit number was used, 
known as the International Standard Book 
Number (ISBN).

The first nine numbers identify the book and the last is 
a check digit. The last digit is generated by multiplying 
the first digit by 10, the second by 9 and so on, then 
adding up all the results. The remainder when this is 
divided by 11 is subtracted from 11 to give the check 
digit. (The remainder could be 10, in which case an X 
is used, or the number may be exactly divisible by 11, 
in which case a 0 is used.)

For example 0951611208 is a 10-digit ISBN number.
0 × 10 + 9 × 9 + 5 × 8 + 1 × 7 + 6 × 6 + 1 × 5 
+ 1 × 4 + 2 × 3 + 0 × 2 = 179 
This gives a remainder of 3 when divided by 11. 
11 – 3 = 8 so it is likely that the ISBN number
is correct.

Random numbers are very useful in many 
situations. Random numbers can be generated 
by physical objects like rolling dice but this is very 
time consuming and in many situations it is useful 
to be able to generate random numbers on a 
computer.

For example many computer games use random 
number generators to simulate ‘real life’ so that the 
opposition players in your football game aren’t too 
predictable or so the baddies don’t always come at 
you at the same time in a shoot out. The lotteries in 
some countries also use random-number generators to 
choose the numbers. 

Maths is useful in my book!

Random numbers are also very important in 
simulations. Modelling the weather, the spread of 
diseases or the number of people using the queues in a 
supermarket all involve random events. Mathematical 
modellers need to generate random numbers to create 
computer-based simulations so they can try different 
strategies for dealing with events.

Generating truly random numbers on a computer is 
impossible but mathematicians have created functions 
that appear as if they are random. These are known 
as pseudo-random number generators and prime 
numbers feature heavily in these functions.

Because 11 is a prime number it doesn’t have any 
factors in common with the multipliers (10, 9, ..., 2). If 
a mistake has been made by copying down a number 
incorrectly or confusing the order of two of the numbers 
then the check digit will be incorrect. 

Since 2005 13-digit ISBNs have been used but finding 
a suitable number, large enough to not have factors 
in common with the multipliers and with enough 
symbols (the X is no longer used) has been difficult 
and the check digit in 13-digit ISBNs do not show up 
all possible errors generated by either getting a single 
number wrong or copying down two numbers in the 
wrong order.

Maths is, like, totally random
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Much of a muchness

What is the average height of students in your 
class? If your whole class stood in height order, 
would there be the same difference between each 
person and the next?

A distribution looks at how a set of data is spread out 
across different values. Usually the mean is roughly in 
the middle of the data (you would expect the student 
with the mean height to be standing near the middle of 
the line when your class are standing in height order). 
You can then use mathematics to look at how all the 
other bits of data are distributed around the mean.

The normal distribution is a very common distribution 
which describes how most of the data is close to the 
mean with progressively fewer data points once the 
values get much bigger or smaller. You can see this in 
your class where most people are close to the mean 
height, often just slightly above or below it. There are 
only a few people that would be considered to be very 
tall or very short!

The power of distributions is that the same 
mathematical distributions appears in all sorts of 
situations: everything from the size of animals and the 
movement of the stock market to the way heat radiates 
from objects and the way that people make mistakes! 
Importantly, if we expect something to be normally 
distributed but it is distributed in a different way then 
we can conclude that something suspicious is going on.
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Financial fraud

If you are an investor who wants to invest in an 
investment fund, you want to make sure that the 
investment company are being honest when they 
show you their finances.

However, when an investment company has to release 
their monthly profit, they are more likely to want to 
exaggerate a good profit and they would be very keen 
to cover up a loss. If you plot all of their statements 
and have a look at the distribution, you can see if it 

Much of your body and the way it operates follows 
well-known distributions. So, if your body starts to 
deviate from what is expected, doctors know that 
something might be going wrong.

In medicine, doctors often use what is called a
t distribution, which is a variation of the normal 
distribution that is used when there are only a small 
number of data points. One area this is used in is 
detecting prostate cancer. If the volume of a prostate 
gland differs from what is expected, doctors can 
calculate the chance that this is just a random 
fluctuation or whether it may be caused by cancer. 

The t distribution was discovered by William Gosset 
in 1908. Gosset worked at the Guinness brewery and 

they didn’t allow employees to publish papers in case 
they gave away any brewing secrets so he published his 
findings under the pseudonym ‘Student’.

Medicine

deviates from the shape that you would expect for a 
good, honest investment company. In fact, in 2009 the 
Madoff Hedge Fund was part of an alleged £30 billion 
fraud that was detected using distributions.

HM Revenue & Customs use distributions when 
checking tax assessments for fraud. They plot all of the 
assessments for people in the same profession and 
then investigate any people whose tax deviates from 
the expected distribution.
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Getting complex
If a number is a combination of a real number and 
an imaginary number, such as 2 + 11i, we call it a 
complex number.

How can you have a number that is imaginary? It 
sounds like mathematicians are indulging in some 
wishful thinking!

Actually, when you think about it, negative numbers 
(and even zero!) are just made-up numbers but they 
are extremely helpful for describing and solving 
maths problems. An imaginary number involves the 
square root of negative one. For hundreds of years 
mathematicians insisted that you cannot have the 
square root of a negative number but, in 1545, the 
Italian mathematician Gerolamo Cardano decided to 
pretend that there was such a number. (We now call the 
square root of negative one i.) To his surprise, he found 
that this new pretend number obeyed the same rules 
of arithmetic as real numbers and was useful when 
solving maths problems.

Solving an equation like x + 5 = 2 requires you to use 
the made-up number –7. Solving an equation like
x2 = –9 requires you to use the imaginary number 3i. 
Complicated equations such as x3 + 3x2 – 12x – 18 = 0 
do have real solutions such as x = 3 but, to get these 
answers, during the working-out you use imaginary 
numbers (in this case, the numbers 2 + 11i and 2 – 11i 
appear).

Solving equations

Imaginary numbers are like an off-road detour 
when the normal road is blocked. When you reach a 
calculation that you can’t do with normal real numbers, 
imaginary numbers can take you off-road around the 
problem before bringing you back on to the real road 
on the other side of the blockage.
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Making pictures

Because a complex number has two parts, one 
real and one imaginary, it can be represented 
on a diagram as a point with the real part giving 
its horizontal position and the imaginary part its 
vertical position (a bit like coordinates).

Such a diagram is known as an Argand diagram 
after the French mathematician Jean-Robert Argand. 
In 1978 the mathematicians Robert Brooks and Peter 
Matelski decided to try repeatedly squaring complex 
numbers and then adding the original number. They 
then drew an Argand diagram using these complex 
numbers and coloured in all the ones that stayed 
small no matter how long they continued the squaring 
and adding process. What they ended up with is the 
Mandelbot set, a picture of which is shown on the right.

It was noticed by the mathematician Leonhard 
Euler in 1748 that imaginary numbers were very 
good at describing things that rotate or oscillate. 

Many years later, electrical engineers were trying to find 
a good way to mathematically represent the alternating 
currents that power our modern electronic lifestyle. 
They realised that they could represent the current 
flowing as the real component of a more complicated 
imaginary function. While it may sound like this would 
make things more complicated, doing calculations 
with the imaginary function was far easier than just 
using ordinary numbers – particularly when looking at 
electrical phase change and impedance. At the end of 
the imaginary calculation, the answer they needed was 
just the real component. 

In electronics, the symbol i was 
already used, to represent current, 
so engineers use j to represent the 
square root of negative one.

Electronics
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a car, going on holiday, etc. Interestingly, in both these 
scenarios inequalities are an important factor in the 
decisions made by the investor or the bank.

If you walk into a bank or apply online for a fixed-rate 
loan, the first stage is generally assessing your income 
and expenditure. This acts as a rough and ready 
measure on your ability to repay the loan. If, after 
taxes, rent, bills, entertainment, food, etc. your income 
is greater than or equal to (>) your projected loan 
repayments you are likely to be approved for the loan, 
or at least encouraged to proceed with the application.

Alternatively, when planning for the future, you may 
wish to receive a fixed return based on how much you 
invest. Let’s say the interest rate at the time is 5% and 
you want at least £10 000 a year return for when you 
retire. You can use the calculation I = Prt (where I is 
income, P is the principal amount invested, r is the rate 
of interest and t is the number of time periods).

You can say that:  

So, and admittedly this is very simplistic, in order to 
earn £10 000 a year (before taxes), you would need 
to have invested £200 000 in a financial product that 
offers a 5% rate of return. Of course, this does not 
include factors such as incremental payments, changes 
in interest rates, etc. but it gives an idea. Start saving 
those pennies … 

‘Dark rain clouds gather over the horizon, 
there’s one hell of a storm coming.’ Actually 
this has nothing to do with the weather – that’s 
another story altogether – but the old adage of 
saving pennies for a rainy day has become an 
increasingly important consideration in recent 
times.

A variety of factors impact on the investment decisions 
we make for our future. The population is getting 
older and the proportion of people in the workforce 
supporting that population is getting smaller. Where 
are pensions going to come from? The volatility of 
stocks and shares can mean that, if there is a stock 
market crash, the value of an investment can fall 
to almost nothing. To reduce this risk, investors can 
choose to invest in less risky financial products that 
offer fixed (but potentially lower) returns over a period 
of time.

On the other hand, people may turn to banks for loans 
to fund immediate purchase decisions such as buying 

You can stand under my umbrella ...

          I = Prt > 10 000
P × 0.05 × 1 > 10 000

        P > 10 000 ÷ 0.05
         P > 200 000
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Elasticity – the difference between 
priceless and pricey

Particularly in the developed world, there are 
many aspects of our daily lives that we take for 
granted. Perhaps none more so than the ability to 
reach for a tap, fill a glass with water and drink it.

The human body can survive almost 18 days without 
food but only three days without water. Water is 
essential to life as we know it. No matter how expensive 
it becomes to obtain, without it we cannot exist. We say 
that demand for water is inelastic.

On the flipside, as the Christmas holiday season 
approaches, retailers and manufacturers tempt 
consumers with powerful advertising campaigns for 
items such as HD television, the latest games console 
or designer clothing. We don’t need these things, 
there are plenty of alternatives we could buy. Often, 
however, it comes down to price. If the demand for 
a product is affected by the price charged for it, the 
demand for that product is said to be elastic. Retailers 
and manufacturers use advertising to try to increase 
the demand for their goods and make it less sensitive 
to changes in price. By making it a must-have product 
they hope that consumers will be willing to pay 
whatever price is asked.

Retailers and manufacturers may also reduce prices 
through sales and discounts. With elastic demand, a 
reduction in price will generate extra demand but will 
this lead to a fall in revenue? They have to drop the 
price just enough to attract enough consumers so that 
revenue will increase.

Price elasticity of demand (Ed) for a given product, is a 
coefficient that can be calculated using

If –1 < Ed < 1 demand is inelastic and, if the price 
decreases, so does revenue (and vice versa).

If Ed < –1 or Ed > 1 demand is elastic and, if the price 
decreases, revenue increases.
 
A variation on the theme of elasticity are aisle 
promotions and loss-leader products, often found 
in supermarkets under the banner of ‘Buy one, get 
one free’ or ‘3 for 2’. These incentivised offers are 
designed to attract customers to buy more of a product 
but also to encourage them to buy other items at the 
same time, as well as encourage the behaviour of 
repeat purchasing from the outlet in the future. The 
revenue from the products on special offer is likely 
to be less. Overall, however, the decrease in price of 
the promotional goods will lead to increased revenue 
for the supermarket as shoppers start to demonstrate 
loyalty as well as changes in purchasing behaviour, 
buying more than they need.

% change in quantity demanded
% change in price
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fractals in the tree
Fractals are geometric shapes with lots of 
fascinating properties – they also happen 
to be abundant in nature from snowflake 
crystals to lightning forks, the structure of 
the lungs to the branching patterns of trees. 
Tree trunks have branches, which have 
branches which have branches and so on. 
They are all similar but not identical.

crowd safety 
The FA Cup Final and fractals represent 
an unlikely alliance but mathematician 
Keith Still has found a link. He has showed 
that people in a crowd do have a sense 
of direction but, because their line of sight 
is obscured, they follow other people and 
compete for spaces as they appear. If 
the crowd is moving in the right general 
direction, it is far easier to just go with 
the flow rather than fight against the tide.
Modelling and predicting this behaviour 
has many applications, including crowd 
safety.

angular momentum
This dancer has a fixed angular 
momentum that links his radius to the 
speed he is spinning. This means that 
he can tuck his arms and legs in to 
reduce his radius and make himself 
spin faster in the air.

camera

brick tiling
These bricks repeat the same pattern over 
and over with no gaps. Mathematicians 
have shown that there are only 17 different 
types of pattern that will cover the ground 
like this.

speakers
Digitally recorded music you can hear through 
speakers or headphones goes through a lot of 
maths to get to your ears. Fourier transforms 
take sound waves and translate them into 
number values (data). A lot of the translated 
values are outside the human range of hearing 
so can be dumped, leading to smaller data 
files. Hence the ability to transport thousands of 
songs on an mp3 player, while a conventional 
audio CD will only hold around 20 songs.

A digital photograph involves millions 
of pixels, each a separate dot of colour. 
The position of each pixel in the photo is 
identified using its x and y coordinates

19



Although cancer cells are three-dimensional, by 
studying cell structure in two dimensions we can 
determine whether or not further investigation is 
required. For example, mammograms are used to 
screen for abnormalities or to identify the nature of 
breast lumps. 

Cancer cells derive their name from the Greek word 
for ‘crab’ because they are often crab- or star-like in 
appearance. The breast is x-rayed and the cell clusters 
shown on the resulting mammograms are analysed. If 
irregular or star-shaped clusters are found, the ratio of

where p is the perimeter of the cluster and a is the area 
of the shape, can be determined. The larger the ratio,
the greater the concern.

Extending the technique into three dimensions allows 
comparison of the surface area to volume ratio and 
offers a different perspective and, possibly, ideas for 
dealing with cancer.

One of the most deadly yet least understood 
diseases known to mankind is cancer. Cancer 
causes cells in the body to grow uncontrollably 
and the malignant growth may invade other 
tissues and organs in the body.

Geometry is a branch of mathematics that can help 
identify cancerous growth and help in the prevention 
and cure of the disease.

Fighting back against cancer

p2
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Investigation
You can investigate the ratio of the perimeter 
of a shape to its area by taking various 
measurements of regular shapes (such as 
squares, pentagons and hexagons) and 
calculating the ratio

Extend this to irregular shapes. What do
you find?

p2

a

With regular shapes, you may notice that 
as the number of sides increases, the ratio 
decreases. However, with irregular shapes, 
it is not so easy to generalise and in some 
cases you will see the ratio increase, 
meaning further examination of the cell 
clusters in real life.
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There is a simple fractal that you can create that will 
also give you an insight into the mysterious world of 
infinity. One mathematician who explored this was 
Georg Cantor (1845–1918). He produced the Cantor 
set using the following method.

The sum of all the lengths removed is the infinite series

        +        +       + …,

which totals 1. In other words, you started with a 
line length of 1 and, if you sum the lengths of all the 
removed regions, that should also come to 1. You may 
well be thinking that you must have no points left but, 
and here’s the brain-frying bit, take the point

    x =       :

this point can never be removed using the process 
above.

In fact there are an infinite set of points that aren’t 
removed by this process. These are the Cantor set. The 
Cantor set, by logic, should be empty but, by logic, it 
should also contain an infinite number of points!

This definition can be extended further. For example, 
the locus of zero values given by a quadratic 
polynomial (not tackled here!) gives rise to some 
spectacular shapes called quadratic surfaces with 
names such as spheres and saddles.

If we delve deeper still we enter the realms of fantasy 
and can explore impressive geometrical representations 
such as fractals. Elsewhere in this booklet you can see 
the Sierpinski triangle and the Mandlebrot set. You can 
also see fractal geometry in everything from crowd 
movement at a major sporting event to snowflakes to 
computer-generated imagery for games and movies 
(such as is seen in the opening sequence of Casino 
Royale).

1
4

What’s that coming over the hill? 
Is it a locus?

The Cantor set

Start with a line of length 1. This can be 
defined as the set of points 0 ≤ x ≤ 1.

Underneath this draw a copy of the line with 
the middle third removed  
 
(i.e.   removed.) 

Underneath this draw a copy of the last line 
with the middle third of each section removed.

Repeat stage 3 (infinitely many times!).

Two questions to think about.

What is the sum of all the ‘lengths’ of the 
regions you have removed?

Can you identify any region or point from 
the original line ‘length’ that has not been 
removed?

1.

2.

3.

4.

•

•

2
3

< x <1
3

1
3

2
9

4
27

1 2

3 4

In mathematical terms, a locus is a collection of 
points that share a common feature or property. 
For example, a circle is made up of a locus of 
points that are equidistant from a fixed point (the 
centre).
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However, even though these equations can be solved 
to help us understand the flow of anything that can be 
considered a fluid (and this includes not only gases 
and liquids but even things like traffic in a city and 
stars moving in a galaxy) they are not mathematically 
complete! Mathematicians have not managed to work 
out if these differential equations will always produce 
an answer and if any answer they give will always 
make sense. The Clay Mathematics Institute have 
decided that this is one of the most important unsolved 
problems in maths and so they have promised to give a 
million US dollars to the first person to fix the problem. 
Could you be the person who gets a million dollars for 
completing our understanding of the Navier–Stokes–
YourName differential equations?

Racing cars need to be able to cut through the 
air at high speeds and buildings need to remain 
standing even in very high winds. In both 
situations, engineers need to understand the 
behaviour of air as it flows around objects.

In fact, air in these situations can be thought of as a 
fluid and the maths behind how fluids behave is known 
as fluid mechanics. This covers things as diverse as how 
blood flows through a heart and how peanut butter 
moves through pipes in a food factory.

The foundation of fluid mechanics is a collection of 
differential equations that were derived by Claude-
Louis Navier in 1822 and then developed by George 
Stokes in 1845. This set of differential equations are 
called the Navier–Stokes equations and they allow us to 
understand the flow of fluids.

Go with the flow
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driver continues to use the same strategy as before. 
Using simple distance, velocity and acceleration 
equations and something called the mean value 
theorem it is possible to work out whether the driver 
has broken the speed limit, even if she is obeying the 
limit as she approaches the cameras.

The position function (or distance) of a travelling car 
can be mapped as 

  

(where a is acceleration, v0 is initial velocity, x0 is initial 
position and t is time).         is the first derivative of 
the equation above with respect to t and this is a 
measurement of velocity (or speed).

The mean value theorem states that 

(the rate of change in distance over the change in time 
– in other words the average speed).

In practice, this means that the first camera makes 
a note of the initial position and time (x(t0) and t0  
respectively). The second camera marks the finish 
position and time. By substituting the values into the 
equation above, it is relatively simple to work out if the 
driver has been speeding or not.

This method of recording average speed is very difficult 
to argue against particularly if you want to take it to 
court. The moral of the story? Drive safely!

Conventional methods for detecting speeding 
include radar guns and roadside cameras. 
Increasingly, however, average-speed cameras 
are being introduced to Britain’s roads and, with 
the infallible logic of maths, they are hard to 
deceive.

Take the example of a driver who has spotted a 
roadside camera. Obviously if she is speeding and 
spots a camera, she will slow down using the brakes as 
she approaches the camera. Once she has passed it, 
however, she will probably speed up again. If she sees 
another camera later in the journey, she will apply the 
brakes again, then speed up again once she’s past it.

Now take the scenario where two average-speed 
cameras are placed at a known distance apart and the 

When looking for signs of a healthy body, or 
otherwise, two of the things doctors measure 
include blood pressure and pulse. The flow of 
blood around the body is often referred to as 
haemodynamics. 

The flow of blood (and rate of change of flow 
– differentiation!) through the body is critical to 
our survival. Often increase of blood pressure 
and/or restricted blood flow through the arteries 
(atherosclerosis) due to the deposit of materials such as 
cholesterol is a major sign that something like a heart 
attack could strike pretty soon.

The need for speed

x(t) =        at2 + v0t + x0 
1
2

The way to measure and monitor such phenomena 
are based on medical knowledge coupled with 
mathematical expertise including an understanding 
of fluid dynamics. Using Newton’s laws of mass and 
momentum, the Navier–Stokes equations, Bernoulli 
equations, among others, it is possible to model the 
optimal blood flow through a body.

If the signs are caught early enough you may want to 
thank maths and medicine, amongst others, for helping 
to recognise the danger.

Calculus for a healthy heart

0

0

( ) ( )( ) x t x tx t
t t
−′ =
−

( )x t′
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If the track expanded by just 0.01% to 18.290 m (i.e. 
by about 2 mm) the height of the middle of the track 
would have risen by over 13 cm!

Welded rails are now more common. Welded tracks 
give a smoother ride, especially at higher speeds, but 
are more susceptible to buckling as there aren’t any 
gaps. To avoid buckling rails are heated before laying 
them.

Stay on track with maths

Railway tracks can be made of connecting pieces 
of rail that are usually 60 feet (18.288 m) long. 
The pieces are either bolted or welded together at 
the ends.

When the rails are bolted together a small gap is left 
between them to allow for expansion in hot weather. 
The familiar ‘clackety-clack’ noise is the result of a train 
moving over the gaps between the rails.

If the gaps weren’t left there could be a serious 
problem with the rails buckling when they expand on 
a hot day. You can model the effect of a piece of track 
expanding using Pythagoras’ theorem. 

9.145 m

18.288 m
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You’ve probably met 3-4-5 triangles when 
studying Pythagoras’ theorem: if a right angled 
triangle’s base is 3 units and its height is 4 units 
then its hypotenuse is 5 units. This works because 
the angle between the base and the height is a 
right angle. Did you know that carpenters and 
joiners reverse this as an easy way to check if a 
corner is a right angle?

Want to be square ... 
use the 3-4-5 rule

To check if an angle is a right angle carpenters measure 
3 units (inches, metres, tens of centimetres, light years or 
whatever you want!) from the angle along one side and 
make a mark, then measure 4 units from the angle along 
the other side and make a second mark. The distance 
between the two marks should be exactly 5 units.

This easy check is used to see if edges are at right angles 
to each other and if walls are perpendicular.

Pythagoras lived on the Greek island on Samos 
between 570 and 495 bc where he brought 
together one of the first schools of mathematics. 
He is widely credited with discovering the 
theorem that bears his name but there are other 
examples from the ancient world that demonstrate 
knowledge of the relationship between the length 
of the sides of right-angled triangles.

In India, where the result is often known as the 
Bhaskara theorem, there is evidence of knowledge of 
the relationship that predates Pythagoras. The ancient 

Indian mathematicians Baudhayana, who lived around 
800 bc, and Apastamba, who lived around 600 bc, 
featured the relationship in their writings. Some people 
believe that both of these were based on earlier 
discoveries in Mesopotamia (which covered what is 
now Iraq, and parts of Iran, Syria and Turkey). 

In China the relationship is known as the Gougu 
theorem. The Chou Pei Suan Ching contained a proof 
of the Gougu theorem and appeared between 500 bc 
and 200 bc.

It’s not all Greek 
to me!
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To the human ear the increase in the pitch of the notes 
sounds constant even though the gap between the 
frequencies is increasing.

Splitting into 12 is not the only way to split an octave. 
Arabic music uses up to 24 divisions and Chinese 
music does not use equal temperament but splits an 
octave so that the ratio of the frequencies of one note 
to the next is a whole number. This is often referred to 
as ‘just intonation’.

The relationship between maths and music is very rich 
and this is just one example. There are many other 
mathematical features that occur in music such as 
Fibonacci numbers and the golden ratio.

Did you know that musical scales are based on 
maths? All notes have unique frequencies, with 
higher notes having higher frequencies, and 
the relationships between different notes are 
mathematical.

The simplest of these relationships is the one between 
the same note in different octaves: to produce the same 
note one octave higher you double the frequency. For 
example the note A above middle C has a frequency of 
440 Hz; the note A one octave higher has a frequency 
of 880 Hz. To increase another octave you would 
double again, so the next note A, an octave higher is at 
1760 Hz. You can show this really easily using a guitar: 
if you pluck the A string, then press down on the twelfth 
fret and pluck it again you will have halved the length 
of the vibrating string which doubles the frequency 
giving you an A one octave higher!

Music based on one note, even played at different 
octaves, would be very boring. To generate more notes 
you need to split the octave into a scale. Traditional 
Western music uses the Chromatic scale. This has as a 
basis the frequency 440 Hz for the note A (often written 
A440) and splits the scale into 12 notes. These are the 
notes you would see on a piano keyboard or guitar 
fretboard.

The 12 notes the scale is split into are A, A#, B, C, C#, 
D, D#, E, F, F#, G, G#. (The # symbol means ‘sharp’.) 
The most common way to generate these notes is to 
use ‘equal temperament’ where each step up the scale, 
or semitone, is defined so that the ratio, r, of one note 
to the previous note is constant. After 12 semitones 
you should have moved up a complete octave by 
multiplying by the ratio 12 times. This means that if you 
start at A440 you get the equation 440 × r12 = 880 which 
solves to give

This can then be used to generate the frequencies of all 
the notes in the scale.

If maths be the root of music, 
play on

Note Frequency (Hz)

A 440.00

A# 466.16

B 493.88

C# 523.25

C 554.37

D# 587.33

D 622.25

E 659.26

F 698.46

F# 739.99

G 783.99

G# 830.61

A 880.00

= ≈12 2 1.0595r
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Maths keeps the 
world in motion

Johannes Kepler lived in central Europe, in what is 
now part of Germany, between 1571 and 1630. He 
was an astronomer and mathematician who studied 
the motion of the planets and was one of the first 
people to write in defence of Copernicus’ model of 
a sun-centred (or heliocentric) universe; before this 
most observers believed the Earth was at the centre 
of the universe. This defence took him eight years to 
perfect! 

Kepler studied data collected from observations by the 
Danish astronomer Tycho Brahe and suggested three laws 
for planetary motion. The third of these laws relates the 
time it takes for a planet to orbit the Sun (its period) with 
its distance away from the Sun.

Kepler’s third law states that the square of the period, P, is 
proportional to the cube of the distance, d: 

    P 2     d 3 or P = kd 1.5 

where k is constant.

Kepler even recorded the day he made the discovery: 15th 
May 1618, although he did also state that this discovery 
was a result of seventeen years of hard work – there’s a 
lesson for us all there!

Slide rule

You’ve probably noticed skid-marks left on roads 
where cars have had to brake suddenly. Accident 
investigators can use maths to tell the speed of a 
car from the length of the skid mark.

The length of the skid mark is proportional to the speed 
of the car squared. So investigators use the formula: 
d = kv2 where d is the length of the skid-mark, v is the 
speed and k is a constant that depends on such things 
as the road surface and the conditions. 

Rearranging this gives: 

which lets them estimate the speed directly.

There are various reasons why this might be an 
underestimate of the speed though. Only part of 
the skid marks may be visible, a collision may have 
affected them or the brakes may have slowed down 
the vehicle before the car started skidding. For these 
reasons the speed calculated is often referred to as the 
minimum speed, leaving the accident investigators with 
an inequality, and often more maths to do!

∝

dv
k

=
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vaccinated so that the virus does not spread at all 
– this is known as herd immunity. Smallpox has been 
eradicated worldwide by vaccination; polio is likely to 
be eradicated soon by this method.

A model is only as good as its assumptions (and the 
mathematics!).

Many diseases are caused by viruses. In order 
to help stop the spread of viruses, from those 
causing the common cold to much more serious 
ones like HIV, it is necessary to be to able predict 
how fast they will spread to.

It is the job of a mathematical biologist to create a 
mathematical model of how many people can expect 
to be infected. The spread of many viruses can be 
modelled by exponentials. This is because the number 
of people who are infected in any given time period is 
usually proportional to the number who are already 
infected.

An accurate model is essential in deciding how to try 
to contain viruses. Modelling the spread of a virus as 
exponential growth is especially accurate in the first 
stages of an outbreak. It is then possible to adapt this 
to give more accurate predictions as the virus spreads 
further. These models can be used to test different 
strategies for dealing with the disease using computer-
based simulations. These strategies can include the use 
of vaccinations, other drugs or even travel restrictions.

Using an accurate model can even help in eradicating 
viruses completely. The model can be used to predict 
the proportion of a population that needs to be 

Saving lives with maths
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In 1965 Gordon E Moore, one of the founders of 
Intel, suggested that the number of transistors 
that can be fitted onto a silicon chip doubles every 
two years. The number of transistors affects many 
aspects of computing such as power, speed and 
capacity and consequently all of these qualities 
have grown exponentially. 

Although the law was first suggested over 40 years ago 
it still remains accurate today. In 1972 it was feasible to 
fit 2500 transistors on a silicon chip, by 1974 the figure 
had doubled to 5000. By 2008 the figure was nearly 2 
billion!

The law is now seen as a standard that all producers of 
computer hardware should try to achieve.

There is much debate about how long the exponential 
growth predicted by Moore’s law can continue. As 
transistors get smaller and smaller the production 
techniques required to make the components get 
more difficult. Some current components are only a 
few atoms thick and it is possible that as these are 
reduced further then a limit will be reached. The world 

It’s not just exponential growth that’s useful. 
Exponential decay is too and can be used to 
estimate the age of ancient objects. 

Carbon-14 is a radioactive isotope of carbon (the 
more common isotope being carbon-12). The ratio of 
carbon-14 to carbon-12 in the atmosphere has stayed 
almost constant for over 50,000 years at about 1 part 
in a trillion. This is the ratio found in any living plant or 
animal. Once a plant or animal dies it stops taking in 
new carbon and the carbon-14 decays radioactively, 
so the proportion of carbon-14 reduces exponentially. 
The half-life of carbon-14 is 5730 years. In this time 
the amount of carbon-14 reduces by a factor of a 

of computing relies on mathematicians and scientists 
to devise alternative technologies to produce hardware 
that produces the constant improvements that the 
modern world has come to rely on. 

half. Using this fact the proportion of the carbon in 
an organic object that is carbon-14 can be used to 
determine the age of that object. 

One famous example of an object that has been 
carbon-dated is the Turin Shroud. This is a piece of 
linen cloth found in a chapel in Turin Cathedral in Italy. 
The cloth appears to show the image of a man who 
has been crucified. Many people believe that it is the 
cloth placed around Jesus after his crucifixion. Radio-
carbon dating in 1988 showed the cloth to be about 
700 years old. There is still much controversy over its 
true age.

The pace of change

Using maths for dating
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graph can show the number of audience votes for each 
possible answer. On a consumer affairs programme 
you might see a large foam meat pie divided up to 
show the proportions of fat, sugar, protein and salt in 
a typical pie, each pie slice being in proportion to the 
amount of pie stuff it represents. 

You need to be able to understand graphs to be able to 
understand the world around you, from newspapers to 
scientific papers, from magazines to TV shows, graphs 
are the picture-perfect way to present data.

We like pictures, they help us understand things. 
About half your brain is working to let you see 
things, so it’s no surprise that humans have a 
highly-developed visual sense.

That’s why graphs are so vital. Rather than having to 
get your head round a long list of numbers you can 
use them to draw a graph. Graphs let you see how the 
numbers are related: are they going up, down, up then 
down? Whatever the trend, a graph can let you see 
it almost instantly. Graphs are encountered in many 
jobs so it is likely that you will have to get to grips with 
graphs – they are everywhere. 

Graphs turn up on TV all the time. On the news they 
can show the rate of inflation for the last 10 years or 
the increase in arctic ice melt. On a game show a 

See it my way

Readers’ reactions
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There are many different types of graphs, 
often called charts, but each is just a different 
way to turn numbers into patterns to help us 
to understand them more easily. Typical kinds 
of graphs include line graphs, pie charts and 
histograms.

Line graphs have vertical 
and horizontal axes and 
points are plotted and 
joined with lines. The 
finance markets use these 
all the time. 

In pie charts you turn the 
numbers into slices (sectors) 
of a circle, the size of each 
slice being dependent on 
the relative size of each of 
the numbers. Businesses 
love these sorts of charts as 
it’s easy to see how much of 
each of their products they 
are selling. 

Graphs are mathematical tools and someone had 
to invent them. The histogram was first introduced 
by the statistician Karl Pearson in the 1890s. As 
well as inventing and using graphs, he also found 
time to set up the first ever university statistics 
department. 

The word histogram comes from the Greek words 
‘histos’ meaning ‘anything set upright’ (here this 
refers to the upright bars on the graph) and ‘gramma’ 
meaning ‘drawing, recording or writing’. 

The pie chart was created by Scottish mathematician 
and engineer William Playfair around 1800. He was 
a serial graph inventor having also created the line 
graph, the bar graph and the little-known circle graph. 
Graph inventors were quite the celebrities in their day. 

Historian, scientist and philosopher Joseph Priestley 
created timelines in the 1760s. These used bars 
to compare the lifespans of various people and 

Histograms are another 
popular type of graph. 
Here you group together 
similar values into ‘bins’ 
so, for example, a bin 
might have size 5 so that 
any values between 0 and 
5 should be added into the 
first bin. In the final graph 

the number of values in each bin is plotted as a bar, 
the area of which is related to the amount of stuff in 
each of the bins. Histograms are a good way to present 
a wide range of data and the frequency with which 
these groups of values turn up, without the detail of a 
line graph, so histograms are very popular in business 
too. 

Computers today will allow you to take your 
spreadsheet data and turn it into all sorts of different 
types of graphs, so you can choose the one that is 
best for your presentation, but of course you need to 
understand the basics, or you could end up showing 
rubbish. 

civilisations. They proved to be a commercial success 
and were reprinted many times. They were probably 
the inspiration for Playfair’s later graph inventions. 
These early types of graphs made it easy to see the 
points that were being made and became a national 
sensation. Priestley was even awarded a Doctor of Law 
degree for his wonderful lectures and graphs. 

Graphical history

All kinds of everything

Priestley Chart
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There are eight different regions in this diagram 
(including the region that is outside of all the circles) 
so that every combination of which of the groups you 
are or are not in can be shown. The power of the Venn 
diagram is that it can take a complicated list of rules 
about how different objects belong in various groups 
and convert it into one picture.

In the 1800s a mathematician called Augustus de 
Morgan stated what are now known as de Morgan’s 
laws and these underpin all of the logical statements 
that are used in modern computer programs. If you 
study statistics, you will meet notation to represent a 
logical statement, such as

However, this is much easier to follow when it is 
represented as a Venn diagram. This is exactly what 
modern computers do when they are processing 
information according to the rules of logic.

What would you do if, at the end of the school 
assembly, all of the members of the football team 
had to wait behind for a message and all the 
people in the maths club had to meet outside the 
hall in the foyer and you were in both? Would you 
stand in the doorway, half in and half out of the 
hall? If you did, you would be part of a human 
Venn diagram!

Venn diagrams were first put forward by John Venn in 
1881 as what he called a ‘diagrammatic representation 
of propositions and reasonings’. In short, he was 
looking for a good way to draw logic statements 
instead of writing them all out as complicated 
sentences.

If you had the three statements:

I am a member of the football team
I am a member of the maths club
I am not a member of the knitting squad

you could represent all of them at once by drawing 
a circle to represent each of the groups, overlapping 
them and showing where you sit.

•
•
•

Logic, probability and programming

P(A B)P(A | B)=
P(B)
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Genetics
In genetics, it is said that a gene is being 
expressed if it ‘switches on’ and starts producing 
the protein that the gene codes for.

To help understand what the various genes are 
responsible for it is important to be able to look 
at which genes are expressed and which aren’t in 
different situations. Geneticists use something called a 
microarray to analyse a genetic sample and produce a 

You can draw Venn diagrams for different 
numbers of sets but, as the number of sets 
increases, the diagrams become increasingly 
complicated.

Venn’s construction for 4 sets

Venn’s construction for 5 sets

Venn’s four-set diagram using ellipses

Venn’s construction for 6 sets

long list of which genes are being expressed. It would 
be a complicated task to compare the genes that are 
being expressed in one situation with those being 
expressed in other situations, but Venn diagrams can 
come to the rescue! Geneticists can use a computerised 
Venn diagram program to show them all of the 
overlapping gene lists.
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closer to 0.7). If you only need the answer to one or 
two decimal places, this is a quick way to get a fairly 
accurate value without using algebra.

Computer games use a huge number of mathematical 
equations to describe the objects in the game and how 
they interact. These equations have to be solved and 
the results rendered into a ‘frame’ to be sent to the 
screen at least thirty times a second. This means that 
your computer needs to solve all the equations involved 
in a 30th of a second! But, because the answers only 
need to be accurate to the nearest pixel, numerical 
methods are used to mathematically generate each 
frame of the game within that fraction of a second.

Maths is all about investigating the patterns 
and relationships in the world around us and 
mathematicians love looking for deeper meaning 
and logic.

While the mathematicians will play around with the 
algebra of an equation, impatient engineers just want 
to know what the answer is! When you need the answer 
to an equation quickly and you don’t need it to be 
absolutely accurate, numerical methods can help you 
out.

There are algebraic ways to solve the equation
x2 – 5x + 3 = 0 but, if you just try a few numbers using 
your calculator, you can work out fairly quickly that 
the first answer is between 0.69 and 0.7 (and that it’s 

Computer games
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Engineering

In engineering, mathematical models are used 
to simulate everything from new Formula One 
cars to proposed sky scrapers. The more factors 
included in the equations (such as air resistance, 
distributions of mass and the elastic properties of 
materials), the more accurate the models.

However, more factors make it much harder to 
calculate any answers from the model. Using numerical 
methods means that extremely detailed systems can 
be modelled and meaningful outputs calculated. The 
beauty of numerical methods is that you can refine your 
answer to increase its accuracy to whatever precision 
you require.

At school you will come across different numerical 
methods, from just guessing numbers to quite 
complicated algorithms. Some of these work better 
than others in different situations and mathematicians 
are always trying to find better and more efficient 
numerical methods. There is even an International 
Center for Numerical Methods in Engineering that 
organises research into numerical methods to help 
support advances in engineering.

One of the oldest numerical methods is called the 
Newton–Raphson method. The method was originally 
suggested by Sir Issac Newton in 1669 and then, in 
1690, Joseph Raphson expanded it into the iterative 
form that is still used today.

Before the advent of modern computers, numerical 
methods were used with the aid of huge books filled 
with tables of values for different functions. When a 
mathematician was calculating a numerical solution, 
they could look up pre-calculated values that had been 
listed with up to sixteen decimal places.
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buoyancy
Buoyancy is a physical phenomenon 
that was discovered by the Greek 
mathematician and inventor Archimedes in 
the third century bc.

Since air pressure decreases with height, 
air presses harder against the bottom of a 
balloon than against its top. This difference 
in pressure creates an upward push. As 
long as this upward force is greater than 
the balloon’s weight, the balloon will rise. 
But as it rises, the density and pressure of 
the air around it decreases, so the buoyant 
force decreases too. When the balloon 
reaches a height at which the buoyant force 
equals the balloon’s weight, it stops rising.

Hot-air balloons use heated air to provide 
buoyancy, because warm air is less dense 
than cool air.

material science
These balloons aren’t made of rubber; 
they’re constructed from Ripstop Nylon. 
Material scientists have developed this 
synthetic fabric and used maths to ensure 
that it is both light enough and strong 
enough whilst still preventing air from 
passing through it.

sun light
Scientists have used maths to measure that 
the speed of light is 300 million metres 
per second and that the Sun is 150 billion 
metres from the Earth. This means we can 
calculate that this light left the Sun over
8 minutes ago.

sunscreen
The Sun emits UV radiation. People who go unprotected 
in the sun can suffer sunburn and increase their risk 
of developing skin cancer. Sunscreen products protect 
against UVB radiation, which causes sunburn, and 
increasingly also protect against the harmful effects 
of UVA radiation. The sun protection factor (SPF) of a 
sunscreen gives a rough guide as to how much longer you 
can stay out in the sun before burning. A sunscreen with 
SPF 15 allows you to remain in the sun 15 times longer 
than if you were unprotected. 
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He once said to his friend King Hiero, “Give me a place to 

stand and I will move the earth.” The king challenged him on 

this. Archimedes then chose a ship which needed many men 

to move it out of the dock, set up a pulley, and was able to 

move it himself without much effort. 

Archimedes also 

showed that the 

exact value of π 
lies between the 

values 310/71 

and 31/7 by 

drawing two 

regular polygons 

with 96 sides, 

one inside a circle with its corners on the circle (inscribed) 

and one outside the circle with its sides just touching the circle 

(circumscribed). Modern integration was born out of ideas like 

this.

Eighteen hundred years 
later…

Johannes Kepler lived in central Europe. He worked on data 

gathered by the Danish astronomer Tycho Brahe and figured 

out that the planets moved in elliptical – not circular – orbits 

around the sun. This is why sometimes Pluto is closer to the 

sun than Neptune – its orbit is more squashed.

He noticed that planets travel faster at some points on the 

orbit. The line joining a planet to the sun sweeps out the same 

area in a given interval of time, no matter

where the planet is. This means that the planet must

move faster when it is closer to the Sun.

At his second wedding, Kepler got distracted trying to figure 

out a better way to work out the volume of the wine barrels 

there. He wrote a book on the subject in 1615. 

In both these problems Kepler used the idea of splitting up an 

area or volume into smaller parts in order to compute it. This 

is the key idea of integration. 

You’re a Greek philosopher in the year
225 bc. What’s the area of a circle with given 
radius?

You’re a wine merchant in Austria in the year 
1615. Which shape of barrels will hold the 
most wine?

You’re designing a new type of airbag to 
prevent head injury in car crashes in 1955. 
Does it work?

You’re a particle physicist in 1989. How much 
force do you need to separate two electrons?

You need to create a better version of JPEG 
compression for image files. What maths will 
be useful?

Integration helps us to answer each of these questions.

Integration is closely associated with its opposite process, 

differentiation. Together they are known as calculus. Related 

ideas have been studied for at least two thousand years. The 

idea of integration is based on calculating an area or volume 

by adding up lots of small areas or volumes that are easier to 

compute. 

Give me a place to stand 
and I will move the earth

One of the greatest mathematicians of all time, Archimedes 

was born in Sicily in the Mediterranean in 287 bc and was 

killed in the Roman invasion in 212 bc. In between he figured 

out a huge amount about mathematics and physics, and 

designed a water pump that is still in use in Egypt today. 

As easy as pi

Suppose you have a circle with 

radius r and you’ve forgotten 

that the formula for its area is 

A = πr2. You could work out the 

area roughly by filling the circle 

with triangles and calculating 

the area of each triangle. This is 

what Archimedes did over two 

thousand years ago to work out a 

better estimate for the value of π.



Preventing injury in crashes

Keep it down!

start time, r, and stop time, s, during the braking period 

and finding the average deceleration for each of those time 

intervals. To find the HIC we take this average deceleration 

raised to the power 2.5 (based on car crash data) and 

multiply it by the length (s – r) of the time interval. The HIC is 

the maximum over all possible time intervals [r, s].

How do you find the average deceleration? It is the integral of 

the deceleration, divided by the length of the time interval.  

The deceleration at time t can always be found, either by 

integrating or by approximating the area under the curve at 

that point.

Now imagine the maths that Formula One engineers use to 

make sure their cars stay on the road even when travelling at 

200 mph!

You’re travelling in a car along a city street at 
30 mph. What happens if you have to brake 

suddenly? 

Usually it takes 1.5 to 2 seconds to stop a 

car when braking normally. However in a 

violent impact, such as a car crash, it can 

take as little as 0.1 seconds to stop a car. 

This can cause serious head injuries.

Since the 1950s, many cars have come 

equiped with airbags in the dashboard. These 

help prevent head injuries by slowing down the deceleration of 

the people in the car. 

In tests of airbags, a calculation is made called the Head 

Injury Criterion, or HIC for short. If the test gives a HIC value 

above 1000 then the crash would have been life-threatening. 

Modern cars may have HIC values of 100 to 200. The HIC is 

calculated by looking at every possible time interval between 

There are many more applications of 
integration and of calculus. The JPEG 2000 
image compression standard is based 
on wavelet theory which uses a lot of 
integration. Image compression ensures your 
photo files take less memory per image. 

Calculus is needed in physics to calculate the effects of forces 

on tiny particles or in massive galaxies. Economists use 

integration techniques to model stock prices.

Integration equips you with the essential skills necessary for 

either a technical or scientific profession!

Websites to check out:
www.mathscareers.org.uk

plus.maths.org

Interview with maths student:

“If I’ve got a maths degree, I can be pretty much 

anything!”

http://plus.maths.org/issue28/interview/index.html

The MacTutor History of Mathematics Archive at the 

University of St Andrews:

turnbull.mcs.st-and.ac.uk/history/ 



Disaster prevention: 
understanding earthquakes

Seismometer in action

The Pacific “Ring of Fire”
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were working in California. They wanted a way to tell how many 

of the earthquakes in California would be big ones causing 

serious damage. They decided to give each earthquake a 

magnitude number. An earthquake with a higher number would 

be more serious than one with a lower number. The earthquakes 

mentioned earlier were measured at 7.5 (South Asia) and 4.8 

(UK).

 

How do you calculate the 
magnitude of an earthquake?

These numbers are calculated by taking the amplitude of the 

largest wave, taking its logarithm to base 10, and then adding 

a factor which depends on the distance between you and 

where the earthquake is. Because the scale is created by taking 

logarithms to base 10, an earthquake with magnitude number 7 

will be ten times stronger than a magnitude 6 earthquake. 

How much stronger was the 
Asian earthquake?

We take the difference between their magnitude numbers and 

get 7.5 – 4.8 = 2.7. Therefore 2.7 is the logarithm to base 10 

of the number we want. If we calculate 10 to the power 2.7 on a 

calculator we get 501.19. Try it out for yourself. This means that 

the Asian earthquake was five hundred times stronger than the 

one in the West Midlands. 

Why do people use

logarithms here? 

It’s much easier to talk about earthquakes with

magnitude 6.5 or 9.0 than to talk about

earthquakes with 5 000 000 or

32 000 000 000 tons of energy. 

On the 8th October 2005, a major earthquake 
struck a mountainous region of South Asia. The 
shock waves radiated out from the epicentre of 
the earthquake, about fifty miles north-east of 
Islamabad, the capital of Pakistan.

It wiped out many villages and left over three million people 

homeless. Over seventy thousand people died in Pakistan and in 

the Indian-administered state of Jammu and Kashmir. 

On the 23rd September 2002, a minor earthquake hit the 

United Kingdom. The epicentre was in Dudley in the West 

Midlands, north-west of Birmingham. A few homes were 

damaged but no-one was injured.

How much stronger was the 
first earthquake than the 
second?

You can measure the strength of an earthquake by using a 

seismometer. The seismometer measures how much the earth 

shakes and records it as a graph. Stronger earthquakes have 

graphs which go up and down more: you can say that the 

maximum difference in height, which is called the amplitude 

of the graph, is bigger. This amplitude tells you how strong the 

earthquake is. 

Where do earthquakes happen?

Nine out of ten earthquakes happen along the Pacific Ring of 

Fire, which circles the Pacific Ocean. Japan, California, Chile 

and the Philippines all lie along this ring. Seventy years ago two 

earthquake scientists, Charles Richter and Beno Gutenberg, 

US Geological Survey’s About Earthquakes page, animations, facts and 

photos: www.earthquake.usgs.gov/learning/



Apple juice, coffee, milk and soap
2.5 is ten times more acidic than an acid such as orange juice 

with pH 3.5. Even your skin is slightly acidic. The soap in your 

bathroom probably has a pH value of between 9 and 10 so it’ll 

help remove the sticky orange juice but won’t react much with 

your skin. The bleach would be about a thousand times stronger, 

which is why you don’t put it directly on your hands!

Once again, using logarithms helps us use a scale of numbers 

which is faster to write down.

Another scale which uses logarithms is the 
pH scale which measures how acidic a liquid 
solution is. An acid such as vinegar has a pH 
value of around 3.

The opposite of an acid is an alkali. Alkalis include soap and 

bleach. Chemically, an alkali cancels out an acid. Since many 

stains on clothes are acidic – tea, coffee, apple juice, milk – 

washing powders and bleaches are usually alkaline. Household 

bleach has a pH value of around 12.5. 

Somewhere in between 3 and 12 on the pH scale we find 

solutions with a pH of 7. The pH of pure water is 7. Anything 

with a pH of less than 7 is called an acid; anything with a pH of 

more than 7 is called an alkali. 

Just as for measuring earthquakes, this scale is logarithmic. This 

means that an acid such as lemon juice with a pH of around 

Experiment

Get a can of cola and some dirty 1p and 2p coins. 

Leave the coins in a glass of cola overnight. Next 

morning take your coins out of the glass. The acid 

in the cola will make your coins look new and shiny! 

Why? Cola contains phosphoric acid – it’s as acidic

as lemon juice!

the nearest penny. The final amount is £5798.47. What would 

happen if the bank computed your interest every month, or every 

day?

 

Final amount after three years if interest is paid on £5000 or on 

£10 000.

One year  £5788.13 £11 576.25
Six months  £5798.49 £11 596.93
Three months £5803.84 £11 607.55
Each month  £5807.54 £11 614.72
Twice a month £5808.66 £11 616.53
Every day  £5809.11 £11 618.22
Every hour  £5809.17 £11 618.34
Every minute £5809.17 £11 618.34
Every second £5809.17 £11 618.34

If interest is paid more frequently, you get more. However, after a

point, the extra amount gets so small as to not make a 

difference. Computing the interest over increasingly smaller time 

intervals does not result in any extra money. The maximum value 

you can get is the original amount multiplied by 1.161 833 7. If 

you take the logarithm of this to the base e (where e = 2.718…) 

you get 0.15, which is 3 x 0.05 (number of years multiplied by 

the interest rate). This is true for any period and any interest rate.

Logarithms are used a lot in investment banking for making 

financial calculations like this.

The number e, which equals 2.718 281 8…, is special in 

mathematics. It was first discovered in 1683 by Jacob Bernoulli, 

a Swiss mathematician who wanted to understand the compound 

interest problem. But it is also special because the function y = ex 

differentiates to itself, and for many other reasons.

INTEREST PAID INITIAL AMOUNT
EVERY:   £5000 £10 000

Interesting times

How much does your favourite snack cost? 
It probably costs a bit more than it did a 
few years ago. This is due to inflation – in a 
healthy economy prices creep up slowly. To 
make up for this, employers usually give their 
employees a cost-of-living increase in their 
wages each year. 

What about people who save money? Banks will pay interest on 

your savings so that they also increase in value. They might pay 

it monthly, or every three months, or once a year. Which is best?

Suppose that you have £5000 in the account and the bank pays 

5% annual interest, and computes it every six months. After six 

months you would have £5000 ×           = £5123.48. After a 

year you would have £5123.48 ×           = £5250.

What if banks calculated interest differently, finding the interest 

paid every six months by halving the annual interest rate? How 

much would you have after three years? 

 

£5000.00 × (1 + 0.05 × ½) = £5125.00 after six months.

£5125.00 × (1 + 0.05 × ½) = £5253.13 after one year.

£5253.13 × (1 + 0.05 × ½) = £5384.46 after 18 months.

£5384.46 × (1 + 0.05 × ½) = £5519.06 after two years.

£5519.06 × (1 + 0.05 × ½) = £5657.04 after 30 months.

£5657.04 × (1 + 0.05 × ½) = £5798.47 after three years.

0.05 corresponds with the 5% rate. We also multiply by ½ 

because six months is half of a year. The interest is rounded to 

1.05
1.05

Websites to check out:
www.mathscareers.org.uk
plus.maths.org

Interview with a financial engineer:
www.plus.maths.org/issue46/interview/index.html

History of the number e and of logarithms:
www-history.mcs.st-andrews.ac.uk/HistTopics/e.html



Oh no...penalties...again!!!
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Using the same mathematics we can 
also estimate the best strategy for 
the goalkeeper – it suggests diving to 
his/her left 69% and to the right 31% 
of the time. So if the striker shoots 
to the more accurate right side, the 
goalkeeper will dive more often to 
his/her left and increase the chances 
of saving the shot. However if the 
striker shoots to the less accurate left 
side, the goalie will only dive in this 
direction (to his/her right) around 
30% of the time – so the lower shot 
accuracy is compensated for by the 
fact the shot is less likely to be saved 
because of the goalkeeper’s strategy.

(For a more in-depth perspective 
on the maths, please see the article 
by John Haigh on Plus magazine 
website: http://plus.maths.org/
issue21/features/haigh/index.html)

Of course, penalties are blasted into 
the back of the net or accurately 
placed. They may be in the top left 
corner, straight down the middle 
or in the bottom right corner. The 
goalkeeper may elect not to dive 
at all or may find that reaching a 
penalty to the top left is more difficult 
than reaching a penalty aimed to 
the bottom left. But at this stage you 
simply construct a more realistic 
model involving more than just 
shooting left and right.

So practice is the better alternative, 
but the maths and statistics can help 
analyse performances. In fact, think 
of all the stats that underline a good 
performance – not just penalty
taking – the distance covered by 
Steven Gerrard in a match, the 
number of tackles by Cesc Fabregas, 
the pass accuracy of Lionel Messi 
or the power of a shot by Cristiano 
Ronaldo – it all counts …

In the summer of 2008, football fans could 
follow Euro 2008 without the stress of seeing 
any of the home nations knocked out on 
penalties (because they never managed to 
qualify in the first place).

Take England. Out of the last eight major tournaments 
that they have qualified for they have gone out on 
penalties five times (being knocked out by other 
means the other three times). This raises an interesting 
question – as the opposition manager about to play 
England, should you play for penalties?

In total, England have been involved in seven penalty 
shoot-outs in competition and have lost six of them 
– their only success coming against Spain in Euro ’96. 
So is this 14% success rate statistically significant? How 
can England improve the odds of success in penalty 
competitions? Penalties are supposed to be a hit 
and miss affair – but with a bit of practice and some 
mathematical analysis, England may well overcome 
their penalty-taking curse.

Let’s set up a simple scenario when taking a penalty.

• A striker can shoot either to his/her left or right,
 and similarly a goalkeeper can dive to his/her
 left or right. 

• If the goalie dives to his/her left and the striker
 shoots to his/her left OR if the goalie dives right
 and the striker shoots right then a goal is scored
 (assuming the striker is accurate) because the
 goalie will be diving away from the ball.

• If the goalie dives to his/her left and the striker
 shoots to his/her right (or vice versa) then the goalie
 and the ball are reasonably close together and
 there is a 50% chance the goalie will save the ball.

• Let’s assume that the striker is accurate when
 shooting left 70% of the time and 90% when
 shooting right.

Using mathematics we can estimate the best strategy 
for the striker to employ – it involves shooting to his/her 
left 56% of the time and to the right 44% of the time, 
irrespective of the goalkeeper’s strategy. Overall this 
corresponds to scoring around 60% of the time. But 
why should the striker shoot more to his/her left side 
even though this is less accurate (70%) than when 
shooting to the right (90%)?



The long arm of the law - probably

Is there maths in that too? 
Probably

Well    99%

Not Well …%

Test Result Positive   1%

Test Result Negative …%

Test Result Positive ...%

Test Result Negative …%

No disease but 
positive result

No disease and 
negative result

Disease and 
positive result

Disease and 
negative result

acceptable. The probability of being well but having a 
positive test result is known as a False Positive, and the 
probability of having the disease but having a negative 
test result is known as a False Negative.

However, in real life the medication we need to 
administer is potent and expensive. Consider everyone 
with a positive test result. How many of them actually 
have the disease? Using the probabilities given, we 
see that the probability of having a positive result is 
2.96% whereas the probability of having a positive 
result and having the disease is 0.98% – so two-thirds 
of the people who test positive do not have the disease 
and do not need the drug administering to them. This 
would be considered to be unacceptable.

A similar scenario of false negatives and positives
can be applied when looking at errors from biometric
readings, for example when logging on to a computer
using fingerprint technology or, more disturbingly, at
an international airport checking biometric readings
against security databases. False positive readings
can lead to a headache for those involved,
whilst false negatives could allow real criminals to slip
through the net.

The statistics we use offer the chance to refine and
improve upon processes that impact on our daily lives
in ways we shouldn’t take for granted.

So what happened? If two events are considered to 
be unconnected they are said to be independent of 
each other. Professor Meadow made the (invalid) 
assumption that the two cot deaths were independent. 
For a non-smoking, affluent family the chance of a cot 
death occurring is around 1 in 8500. So to calculate 
the probability of two deaths occurring in one family 
he simply multiplied the probabilities together giving 
a result of 1 in 73 million. He then presented this as 
the probability that Sally Clark was innocent. This is a 
case of the Prosecutor’s Fallacy. Are you guilty given the 
evidence or given the evidence are you guilty?

However, research suggests that in a family where one 
episode of cot death has occurred, the chance of it 
happening to another sibling is increased by between 
10 to 22 times – this means that two cot deaths are 
certainly not independent. Also consider this, in normal 
circumstances the probability of either double SIDS 
or double murder in a single family is very small but, 
given that a double death has actually occurred, the 
chances of it being double SIDS or double murder are 
more likely.

In 1999, Sally Clark was tried, convicted and 
sentenced to life imprisonment for the double 
murder of her two sons who were aged just 
11 weeks and 8 weeks at the time of their 
deaths. 

The tragedy shocked the nation, as the expert testimony 
of Professor Roy Meadow indicated that the chances of 
the double deaths happening in the same family from 
natural causes – Sudden Infant Death Syndrome (SIDS) 
commonly known as cot death – were 1 in 73 million. 
In other words, so unlikely that Sally Clark must be 
guilty of the murder of her sons. 

However doubts surfaced about the testimony of the 
expert witness on the grounds of poor mathematical 
reasoning. The Clarks had always protested their 
innocence and there was much debate about the 
testimony; the Royal Statistical Society had issued a 
press release pointing out the mistake and indeed the 
conviction was quashed in 2003. 

Medicines that come to the market have
done so on the basis of rigorous testing and
statisticians are vital to that role.

Pre-clinical trials produce masses of data that must be
carefully analysed to determine safety. Clinical trials
involving people can take a number of years and
include the design of safe trials, the right dosage of
medicine and other factors.

Suppose we undertake a screening programme to 
identify a disease and hence administer a cure. The 
aims are quite reasonable. Now suppose 1% of the 
group suffer from the disease and the rest are well but 
also that the there is a 2% chance that the test produces 
a false result. Using this information can you complete 
the following probability tree diagram?

By moving along the branches we can calculate the
various probable outcomes and fill in the probabilities
associated with each outcome. The two ‘dodgy’ 
outcomes are small enough to be considered 



The Beautiful Game? Oh ballistics...
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rg arguably the best ever goal in 2002 in the UEFA Champions 

League Final.

How did he do it?

Well, quadratic equations may help to explain the art of the 

volley. The principles are based on discoveries by Galileo and 

have many implications for military and sports enthusiasts 

alike.

There will always be debate about issues in 
football. Who scored the best goal? The best 
ever player? The best team?

These debates will take up many hours and there will never 

be an outright winner, although Brazil and Liverpool are my 

choices – and I’m always right!

However there is no debate about one of the most technically 

gifted players of the modern era, Zinedine Zidane, who scored 

If u is the velocity (speed) of a football 

in the x direction (horizontal) and v is 

the velocity of the ball in the y (vertical) 

direction, you can calculate the perfect 

height y from which to volley the ball 

given that you are x metres from

the goal. 

This includes an allowance for gravity (g) 

but not for air resistance. However this is 

one of those situations where practice 

makes perfect as to this day I have never 

seen any footballer out on the pitch 

with a calculator just before scoring the 

perfect goal!



Crime Scene Mathematics

Raindrops keep falling on my head... 
but satellites don’t

Where s is the distance travelled by a car, u is the velocity 

of the car, a is the acceleration and t is the time, we have a 

quadratic equation that links s to t.

If we substitute a negative value for a, then we can model 

deceleration and hence braking distance s. This simple 

equation predicts that by doubling your speed it will quadruple 

your stopping distance.

It makes sense to drive safely – and the maths proves it …

Quadratic equations have also been applied 
to the saving of lives and the analysis of 
crime scenes.

When a forensics team reaches a crime scene where bullets 

have been fired, the application of quadratics helps to 

determine where a bullet was fired from.

When investigators arrive at the scene of a car crash they 

can work out the speed of the car at the time of the accident 

and make judgements on dangerous driving, etc. A car can 

travel from A to B by travelling at a constant speed. However 

in order to reach that speed it must accelerate and, using 

common sense, in order to stop it must decelerate (braking). 

To try to understand this, draw a series of regular polygons 

by increasing the number of sides, n, each time by one 

(triangle, square, pentagon, hexagon, etc.). The more sides 

to the shape, the more it resembles a circle. In fact, consider 

a polygon with infinite sides. What shape is this? Each of the 

sides can be thought of as being the x axis but from a different 

point along the Earth’s surface.

Every time the satellite reaches its range (where you expect it 

to land if the Earth had a flat surface), it actually hasn’t. It will 

miss the edge because the Earth has a curved surface and so 

it has new x axis position. Furthermore, with the Earth actually 

rotating, a satellite can be launched to a precise height and 

speed to maintain geostationary orbit, appearing as if it were 

stationary above the same point on the Earth’s surface, whilst 

actually keeping pace with the Earth’s rotation. If we didn’t 

have this, we would keep losing satellite TV feeds and end up 

watching less TV.  

Now there’s a thought …

Let’s perform a simple experiment. You 
throw a tennis ball in the air and (hopefully 
without hitting anyone) it should come back 
down having followed a parabolic path 
after obeying the laws of gravity. This path 
is essentially a quadratic equation with a 
negative coefficient for x2 (why?).

In this age of rapid technological advances, we are continually 

and increasingly reliant on satellite technology. Without 

satellites there wouldn’t be international mobile phone 

conversations, access to thousands of media channels, 

personal navigation systems, weather monitoring, etc. So why 

aren’t satellites falling on our heads like the tennis ball?

Think about a satellite being launched. Let’s assume the Earth 

is stationary and completely flat along the x axis.  At some 

point the satellite will fall back down to Earth, and this would 

be the range of the satellite. However the Earth is spherical, 

not flat, so the position of the x axis changes as we move 

around the Earth.



Counting the cost or splashing out?

Facts & Figures Fibonacci 
sequence

Shopping shopping shopping!

You struck it lucky and won £5000 in a prize 
draw. Having spent some of the cash on a 
new jacket and festival tickets, you decide to 
put £4000 of the money in a savings account. 
But which bank? And what does 5% AER 
mean? 

Your friend wasn’t so lucky and is in debt. She owes £300 on 

her store card and wants to know how fast she needs to pay it 

off. Being able to work with sequences of numbers is vital for 

anyone working in the financial sector.

AER stands for the annual equivalent rate and is the 

percentage of your £4000 that you’ll get in interest at the end 

of the year. 

At 5% AER you’ll get £200 interest after twelve months. If 

you’ve not spent any of those savings then after two years 

you’ll have 5% of £4200, or £210 more interest. The 

sequence £4000, £4200, £4410, £4630.50, … is calculated 

by taking each amount in turn and multiplying it by 105%, or 

1.05. After ten years of saving you’ll have £6515.58. 

How could you make more money? Use your maths skills to 

get a job working for the bank!

See Facts and Figures below for details of salaries you could 

earn using your maths skills in a bank.

In 2007 the average graduate starting salary 
in the UK was £23 000.

The average salary for employed people aged between 22 

and 29 years was £18 000 – £19 000.

25% of employed people aged between 30 and 39 years had 

a salary of less than £14 500.

Graduate starting salaries in investment banks averaged at 

around £36 000. They hire people with 2:1s in a numerate 

degree like maths or science. They may also

look at candidates’ school performance.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... 

Work out what the rule is.

What number comes next?

If you look at the ratio of one term to the 

previous term, this value tends to the golden 

ratio:             = 1.618 033 9...

   

1 + √5
2

Your friend can use mathematical functions found on a 

spreadsheet computer package like Microsoft Excel to work 

out what she should pay each month.

In most jobs a computer can do the boring bits of the 

calculations but you would be expected to know enough about 

how it works to check it’s giving a good answer or to explain it 

to a client or colleague.



Power dressing

Compression compression compression

Cornrow braid hairstyle
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Hair stylists use their experience to make a hairstyle look good 

rather than writing down the maths. But what if you were 

playing a computer game where your character’s hair has 

to move realistically? Lara Croft’s ponytail swings perfectly 

in Tomb Raider because it’s generated by a mathematical 

sequence. Someone’s figured out the right equations to make 

it look real!

Stylists and designers work with shapes, 
colours and materials to create new fashions 
and update styles. Computer animation 
designers also need to create images, but 
they have to write them in mathematical 
language. 

A cornrow braid hairstyle depends on a geometric sequence. 

Geometric means that each term in the given sequence is the 

same multiple of the previous term. So for example 1, 1/2, 1/4, 
1/8, 1/16, … is a geometric sequence where each number is 

half of the previous one. You can see the braid getting smaller 

like this as it curls in on itself. In order to make the style fit the 

person, a hairdresser has to judge how much hair they use in 

each bit of the braid. 

How do you listen to music? How did your 
parents?

Thirty years ago if you wanted to listen to 
music you had to carry around a large and 
heavy radio. Walkmans, the first personal 
stereo players, were just coming in.

These days your iPod can fit easily in your pocket. It has more 

computing power than existed in the world in 1950.

How do they get it so small?

Better computer memory can now hold far more data than 

before. Maths helps microchip designers to make microchips 

smaller and smaller each year.

But there’s more to iPods than just the memory chips inside. 

A music file which takes up 10 MB of memory when stored 

on your hard disc can be compressed to a 1 MB file which fits 

better on your iPod. How does this work?

In the 1930s the American mathematician Claude Shannon 

invented a new science called information theory. We can 

understand the text message “c u l8r” even though letters 

are missing from all of the words. Some of the letters are 

redundant, and some of the letters contain the information. 

Redundancy is taken out in the process of compression to 

make files smaller. This is why the mp3 files played by an iPod 

are smaller: they’ve been compressed.

What’s this got to do with sequences? Well, a sound wave can 

be written as a sum of different sine waves, and compression 

is a process that works with the sequence of these sine waves. 

This maths is called Fourier analysis and was invented over 

200 years ago in France to investigate heat waves.

Fourier analysis is widely used in many fields

of science and engineering.

Websites to check out:
www.mathscareers.org.uk
plus.maths.org

Interview with two designers with a maths/science 
background: plus.maths.org/issue39/interview/
index.html 

Interview with an accountant who studied maths 
and PE: plus.maths.org/issue2/career/index.html

Cornrow braid hairstyle



Geometry and trigonometry also have huge roles in civil 

and military applications including locating aircraft through 

multilateration and hyperboloid shapes. This is based on 

the following principle: If a signal is sent from one location 

then receivers in different locations will get those signals but 

at different times. This is very useful for tracking aircraft and 

satellites.

Is Big Brother really watching you or is the world a

safer place for all the surveillance? There are some

questions maths can’t answer...

You can run...
but you can’t hide (forever...)

Going back to early July 2005, London was 
alive. But no sooner than the announcement 
for the 2012 Olympics been made, than 
Londoners were caught unawares by 
devastating acts of terrorism. The world is not 
always a safe place - but a little maths can 
help to make it a lot safer.

With security services across the world on full alert, the hunt was 

on for those responsible for the failed attacks of July 21st.

One of the suspects had fled to Rome in Italy, and took his 

mobile phone having changed his SIM card in the process. 

However a mobile phone can be tracked in two ways - using 

a unique identifier sent by the SIM card, and also by using a 

unique identifier sent by the handset (IMEI number).

Using transmitters which are positioned at known locations, the 

minute a call is made from a handset, it is relatively simple to 

work out the location of the user using the sine rule, as their 

location is often the third point in a triangle.

Multilateration
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Cellular network

Distances and angles between 
transmitters on a mobile phone network 
can help track phone users using:



Welcome to Hollywood

Need a job? Know your trig!

DeRose encourages people to stick with their maths classes. 

He says, “I remember as a mathematics student thinking, 

‘Well, where am I ever going to use simultaneous equations?’ 

And I find myself using them every day, all the time now.”

Even simple triangles rotating in 3D can produce results that 

are winning Oscars, including the manipulation of Gollum 

from Lord of the Rings.

From modern art to computer games to architecture – the 

humble triangle has come a long way from the text books of

the ancients…

Where will your maths skills take you?

Have you ever watched an animated movie, 
and thought ‘how do they do that?’ The 
chances are it is not just tracing paper and 
colouring pens…

The maths learnt at GCSE and A Level can actually help bring 

animated movies to life.

Tony DeRose is a computer scientist at Pixar Animation 

Studios. He realised his love of mathematics could transfer 

into the real world and a really interesting job by bringing the 

pretend world of animation to life. “Without mathematics we 

wouldn’t have these visually rich environments and visually 

rich characters,” explains Tony.

Advances in maths can lead to advances in animation. Earlier 

maths techniques show simple, hard, plastic toys. Now, 

advances in maths help make more human-like characters 

and special effects. DeRose explains the difference a few years 

can make, “You didn’t see any water in Toy Story, whereas by 

the time we got to Finding Nemo, we had the computer

techniques that were needed to create all the splash effects.”

How do maths classes help with the animation?

Trigonometry helps rotate and move characters, algebra

creates the special effects that make images shine and sparkle

and calculus helps light up a scene.

The rough with the smooth, good times and bad times, highs 

and lows. There are many clichés that describe the phenomenon 

of the  boom-slump cycle.

Did you know that using trigonometry we can forecast when 

there are going to be bad times and when there are going 

to be good times in the economy? Financial analysts and 

politicians use this knowledge to plan for times of high 

unemployment and for making investment decisions. 

The peaks represent times of high employment and the 

troughs represent times of high unemployment.

Maths helps in planning your future. Can you plan a 

future without maths?




